Смекни!
smekni.com

Методика роботи над простими задачами, що розкривають конкретний зміст арифметичних дій (стр. 5 из 12)

Будемо розуміти під математичним мисленням, по-перше, ту форму, якою є діалектичне мислення у процесі пізнання людиною конкретної науки математики або у процесі застосування математики в інших науках, техніці, господарстві і т. д.; по-друге, ту специфіку, яка обумовлена самою природою математичної науки, методів, що застосовуються для пізнання явищ реальної дійсності, а також тими загальними прийомами мислення, які при цьому застосовуються.

Математичне мислення має свої специфічні риси та особливості, вони обумовлені специфікою об'єктів, що вивчаються, а також специфікою методів їхнього вивчення [37, 53].

Існує загальна думка про активну роботу у процесі математичного мислення певних якостей мислення (гнучкість, просторова уява, вміння знаходити головне і т. д.), які в рівній мірі можуть бути співвіднесені як до математичного мислення, так і до мислення фізичного, технічного і т. д., тобто до наукового мислення взагалі.

До числа якостей наукового мислення відноситься гнучкість (нешаблонність), оригінальність, глибина, цілеспрямованість, раціональність, широта (узагальненість), активність, критичність, доведеність мислення, організованість пам'яті, чіткість та лаконічність мовлення та запису [36].

Для прояву гнучкості мислення потрібне сформоване вміння цілеспрямовано змінювати способи розв'язування пізнавальної проблеми, легкість переходу від одного шляху вирішення проблеми до іншого, вміння виходити за межі звичного способу дій, знаходити нові способи вирішення проблем при зміні заданих умов.

Найвищий рівень розвитку нешаблонного мислення проявляється в оригінальності мислення, яка у навчанні математиці, як правило, виступає у незвичності способів розв'язування відомих учням задач.

Глибина мислення характеризується вмінням проникати у сутність кожного з фактів, що вивчаються, у їхньому взаємозв'язку з іншими фактами; виявляти приховані особливості у матеріалі.

Цілеспрямованість мислення характеризується намаганням здійснювати розумний вибір дії при вирішенні певної проблеми, постійно орієнтуючись на поставлену цією проблемою ціль, а також у намаганні відшукати найбільш короткі шляхи її досягнення.

Цілеспрямованість мислення сприяє виявленню такої якості, як раціональність мислення, що характеризується схильністю до економії часу та коштів для вирішення поставленої проблеми, намагання відшукати простий у даному випадку розв'язок задачі, використовувати у ході розв'язування схеми, символіку та умовні позначення.

Раціональність мислення часто виявляється при наявності широти мислення, що характеризується здатністю до формування узагальнених способів дій, що мають широкий діапазон переносу і застосування до частинних, не типових випадків; вміння охоплювати проблему в цілому, не упускаючи при цьому деталей, що мають значення; узагальнити проблему, розширити область застосування результатів, отриманих у процесі її розв'язання [4, 152-153].

Усі розглянуті вище якості мислення можуть проявитися лише при умові прояву активності мислення, що характеризується сталістю зусиль, спрямованих на вирішення деякої проблеми, бажання обов'язково розв'язати поставлену проблему, вивчити різні підходи до її розв'язку, дослідити різні варіанти постановки цієї проблеми у залежності від умов і т. д.

Важливе місце займає критичність мислення, яка характеризується вмінням оцінити правильність обраних шляхів вирішення поставленої проблеми, отримані при цьому результати з точки зору їхньої вірогідності, значущості [37, 53].

З критичністю мислення тісно пов'язана доведеність мислення, що характеризується вмінням терпляче й скрупульозно ставитися до збору фактів, достатніх для винесення будь-якого судження, прагненням до обґрунтування кожного кроку розв'язання задачі, вмінням відрізняти результати достовірні від правдоподібних.

Організованість пам'яті означає здатність до запам'ятовування, довготривалого збереження, швидкого й правильного відтворення основної навчальної інформації та впорядкованого досвіду.

Такі якості наукового мислення, як ясність, точність, лаконічність мовлення і запису, не потребують особливих коментарів. Усі ці якості мислення взаємопов'язані одна з одною, часто виступають в органічній єдності [45, 74].

Отже, математичні об'єкти не володіють жодними речовими (матеріальними) та енергетичними характеристиками, маючи лише одну характеристику: ці об'єкти знаходяться у певних відношеннях один з одним, у відношеннях кількісних, просторових та їм подібних. Тому А. Пуанкаре мав повне право заявити: „Математик вивчає не предмети, але лише відношення між предметами; таким чином, для нього досить байдуже, чи будуть дані предмети замінені якими-небудь іншими, аби тільки не змінювались при цьому їх співвідношення".

Таким чином, математичне мислення – це дуже абстрактне, теоретичне мислення, об'єкти якого позбавлені матеріальності і можуть інтерпретуватися довільним чином, при умові збереження заданих між ними відношень.

Відомо, що розвивати математичне мислення можна за допомогою спеціально підібраної системи задач, вправ і методики роботи з ними. Розв'язування задач – найбільш характерна сфера людської діяльності і являє собою основну діяльність того, хто навчається математиці.

У психології задача розглядається як мета, задана в певних умовах, як особлива характеристика діяльності суб'єкта. Задача тут тлумачиться як суб'єктивне психологічне відображення тієї зовнішньої ситуації, у якій розгортається цілеспрямована діяльність суб'єкта. До задач у широкому розумінні відносять не лише текстові задачі, сюжетні, а й різного характеру вправи, приклади [4, 148].

При розв'язуванні задач формуються мислительні, розумові вміння, а разом з ними сприймання та пам'ять. Розв'язування математичних задач потребує застосування багатьох розумових вмінь: аналізувати задану ситуацію, зіставляти дані та шукане, задачу, що розв'язується зараз із задачами, розв'язаними раніше, виявляючи приховані властивості заданої ситуації; конструювати найпростіші математичні моделі, здійснюючи мислений експеримент; синтезувати, відбираючи корисну інформацію, систематизуючи її; коротко та чітко, у вигляді тексту, символічно, графічно і т.д. оформлювати свої думки; об'єктивно оцінювати отримані при розв'язуванні задачі результати, узагальнювати або спеціалізувати результати розв'язання задачі, досліджувати особливі прояви заданої ситуації. Усе сказане говорить про необхідність враховувати при навчанні розв'язуванню задач сучасні досягнення психологічної науки [17, 21].

Дослідженнями встановлено, що вже сприймання задачі розрізняється у різних школярів одного класу. Здібний до математики учень сприймає і одиничні елементи задачі, і комплекси її взаємопов'язаних елементів, і роль кожного елементу в комплексі. Середній за успішністю школяр сприймає лише окремі елементи задачі. Тому при розв'язуванні задачі необхідно аналізувати зв'язок та співвідношення елементів задачі. Так спроститься вибір засобів переробки умови задачі. При розв'язуванні задач часто доводиться звертатися до пам'яті. Індивідуальна пам'ять здібного до математики школяра зберігає не всю інформацію, а в основному „узагальнені та згорнуті структури". Зберігання такої інформації не обтяжує мозок надлишковою інформацією, а ту, що потрібно запам'ятати, дозволяє довше зберігати та легше використовувати. Навчання узагальненням при розв'язуванні задач розвиває, таким чином, не лише мислення, але й пам'ять.

Математичні задачі повинні перш за все пробуджувати думку молодших школярів, заставляючи її працювати, розвиватися, вдосконалюватися. Кажучи про активізацію мислення, не можна забувати, що при розв'язуванні задач учні не лише виконують побудови, перетворення та запам'ятовують формулювання, але і навчаються чіткому мисленню, вмінню розмірковувати, зіставляти та протиставляти факти, знаходити в них загальне і відмінне, робити правильні умовиводи [46, 16].

Задачі мають активізувати розумову діяльність учнів. Ефективність навчальної діяльності, спрямованої на розвиток мислення, багато в чому залежить від ступеня творчої активності школярів при розв'язуванні задач. Отже, необхідні такі задачі та вправи, які б активізували розумову діяльність.

А.Ф. Єсаулов поділяє задачі на наступні види: задачі, розраховані на відтворення (при їх розв'язуванні спираються на пам'ять та увагу); задачі, розв'язування яких приводить до нової, невідомої до цього думки, ідеї; творчі задачі. Активізує та розвиває мислення розв'язування задач двох останніх видів. Розглянемо деякі з них [15, 71-72].

1. Задачі, вправи, що включають елементи дослідження. Найпростіші дослідження при розв'язуванні задач треба пропонувати, починаючи вже з перших практичних занять. Згодом необхідно давати не лише задачі з елементами досліджень, але й задачі, що включають дослідження як обов'язкову складову частину. Такі дослідження необхідно включати у розв'язування багатьох геометричних задач на побудову, задач математичного аналізу тощо.

Задачі та вправи з виконанням деяких досліджень можуть знайти своє місце на будь-яких уроках математики у початковій школі.

2. Задачі на доведення здійснюють суттєвий вплив на розвиток мислення учнів. Саме при виконанні доведень відточується логічне мислення, розроблюються логічні схеми розв'язування задач, в школярів виникає потреба обґрунтувати математичні факти.

3. Задачі та вправи у пошуку помилок також відіграють суттєву роль у розвитку математичного мислення учнів. Такі задачі привчають звертати увагу на особливо тонкі місця у логічних міркуваннях, допомагають розрізняти дуже схожі поняття, привчають до точності суджень і математичної строгості і т.д. Перші кроки у відшуканні помилок повинні бути нескладними.