4. По каналу связи передают символы A, B, C с вероятностями 0,4; 0,3; 0,3 соответственно. Вероятность искажения символа равна 0,4, и все искажения равновероятны. Для увеличения надежности каждый символ повторяют четыре раза. На выходе восприняли последовательность ВАСВ. Какова вероятность того, что передали АААА, ВВВВ, СССС?
5. На наблюдательной станции установлены 4 радиолокатора различных конструкций. Вероятность обнаружения целей с помощью первого локатора равна 0,86, второго 0,9, третьего 0,92, четвертого 0,95. Наблюдатель наугад включает один из локаторов. Какова вероятность обнаружения цели?
6. Вероятность того, что двое близнецов будут одного пола 0,64, а вероятность рождения в двойне первым мальчика 0,51. Найти вероятность того, что второй из близнецов будет мальчиком, при условии, что первый из них мальчик.
Домашнее задание
1. Некоторая деталь производиться на двух заводах. Известно, что объем продукции первого завода в к раз превышает объем второго. Доля брака на первом заводе 0,3, на втором 0,2. Наугад взятая деталь оказалась бракованной. Какова вероятность того, что эта деталь выпущена первым заводом?
2. Среди женщин – избирателей 70% поддерживают кандидата А, а среди мужчин 60%. Используя данные переписи, согласно которым доля женщин избирателей составляет 55%, оценить вероятность победы на выборах кандидата А.
3. Трое сотрудников фирмы выдают соответственно 30%, 50%, 20% всех изделий, производимой фирмой. У первого брак 2%, второго 5%, третьего 1%. Какова вероятность, что случайно выбранное изделие дефектно?
Изучение случайных величин требует связи этих величин с определенными событиями, которые заключаются в попадании случайной величины в некоторый интервал и для которых определены вероятности. Другими словами необходимо связать случайную величину с полем данного испытания.
Для лучшего понимания рассмотрим пример. При бросании кости могли появиться цифры 1, 2, 3, 4, 5, 6. Наперед определить число выпавших очков невозможно, так как это зависит от многих случайных величин, которые полностью не могут быть учтены. В этом смысле число очков есть величина случайная; и числа 1, 2, 3, 4, 5, 6 – есть возможные значения этой величины.
Определение: Случайной называют величину, которая в результате испытания примет одно и только одно возможное значение, наперед неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены.
Будем обозначать случайные величины прописными (заглавными) буквами: X, Y, Z, а их возможные значения соответствующими строчными буквами x, y, z. Если величина Х имеет три значения то они будут обозначены так: х1, х2, х3 .
Обычно рассматриваются два типа случайных величин: дискретные и непрерывные.
Рассмотрим следующий пример: Число мальчиков пошедших в секцию бальных танцев среди 100 пришедших туда людей есть случайная величина, которая может принимать следующие значения 0, 1, 2, …, 100. Эти значения отделены друг от друга промежутками, в которых нет возможных значений Х . таким образом в этом примере случайная величина принимает отдельные изолированные значения.
Приведем второй пример: расстояние, которое пролетит диск при метании, есть величина случайная. Действительно величина зависит от многих факторов, например от ветра, температуры и других факторов, которые не могут быть полностью учтены. Возможные значения этой величины принадлежат некоторому промежутку (а;b).
В данном примере случайная величина может принять любое из значений промежутка (а;b). Здесь нельзя отделить одно возможное значение от другого промежутком, не содержащим возможных значений случайной величины.
Уже из сказанного можно заключить о том, что целесообразно будет различать случайные величины, принимающие лишь отдельные изолированные значения, и случайные величины, возможные значения которых сплошь заполняют некоторый промежуток.
Дискретной (прерывной) называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным.
Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка. Очевидно, число возможных значений непрерывной случайной величины бесконечно.
Еще примерами непрерывных случайных величин могут быть спортивный результат в беге или прыжках, рост и масса тела человека, сила мышц и другие.
Закон распределения вероятностей дискретной случайной величины.
Для задания дискретной случайной величины не достаточно перечислить все возможные ее значения, нужно еще указать их вероятности.
Законом распределения дискретной случайной величины называют соответствие между возможными значениями и их вероятностями; его можно задать таблично, в виде формулы и графически.
При табличном задании первая строка содержит возможные значения, а вторая – их вероятности:
Х | x1 | x2 | … | xn |
p | p1 | p2 | … | pn |
Сумма вероятностей второй строки таблицы равнеа единице:
.Если множество возможных значений Х бесконечно, то ряд
сходится и его сумма равна единице.Для наглядности закон распределения дискретной случайной величины можно изобразить и графически, для чего в прямоугольной системе координат строят точки (хi; pi), а затем соединяют их отрезками прямых. Полученную фигуру называют многоугольником распределения.
Для непрерывной случайной величины график выглядит в виде кривой непрерывной на данном промежутке.
Как известно закон распределения полностью характеризует случайную величину. Однако часто закон распределения неизвестен и приходится ограничиваться меньшими сведениями. Также для решения многих задач не нужно знать распределения случайной величины, а достаточно знать лишь некоторые обобщающие числовые характеристики этого распределения.
Одной из таких характеристик является математическое ожидание. Для более наглядного определения рассмотрим подход к этому понятию на конкретном примере.
Пусть имеется дискретная случайная величина Х, которая может принимать значения х1, х2, …, хn. Вероятности которых соответственно равны р1, р2, …, рn. Тогда математическое ожидание М(Х) случайной величины Х определяется равенством:
.Пример: Найти математическое ожидание дискретной случайной величины Х, заданной законом распределения:
Х | -4 | 6 | 10 |
Р | 0,2 | 0,3 | 0,5 |
Решение: М(Х)=-4∙0,2+6∙0,3+10∙0,5=6
Математическое ожидание приближенно равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины.
На практике часто требуется оценить рассеяние возможных значений случайно величины вокруг ее среднего значения. Например, в артиллерии важно знать, насколько кучно лягут снаряды вблизи цели, которая должна быть поражена. Именно такие задачи решает дисперсия.
Определение: Дисперсией случайной величины Х называется математическое ожидание квадрата отклонений случайной величины от ее математического ожидания. Дисперсия обозначается, как D(x)
D(Х)=M[X-М(Х)]2=M[(x-x)2]
Пример: Найти дисперсию случайной величины Х, которая задана следующим законом распределения:
Х | 1 | 2 | 5 |
p | 0,3 | 0,5 | 0,2 |
Решение. Найдем математическое ожидание:
.По определению:
.Используя формулу D(Х)=M(X)2-[М(Х)]2 можно найти дисперсию гораздо быстрее:
.Для оценки рассеяния всевозможных значений случайной величины вокруг ее среднего значения кроме дисперсии служат и другие величины.
Средним квадратическим отклонением величины Х называют квадратный корень из дисперсии
1. Найти дисперсию дискретной случайной величины Х и построить многоугольник распределения, заданной законом распределения:
Х | -4 | 6 | 10 |
р | 0,2 | 0,3 | 0,5 |
а) б)
Х | 0,21 | 0,54 | 0,61 |
р | 0,1 | 0,5 | 0,4 |
В денежной лотерее выпущено 100 билетов. Разыгрывается один выигрыш в 50 р. и десять выигрышей по 1 р. Найти закон распределения случайной величины Х – стоимости возможного выигрыша для владельца лотерейного билета.
2. Дискретная случайная величина имеет только 2 возможных значения х и у, причем x<y. Вероятность того, что Х примет значение х =0,6. Найти закон распределения величины Х, если математическое ожидание и дисперсия известны: М(Х)=1,4, D(X)=0.24.
В практике статистических наблюдений различают два вида наблюдений:
· Сплошное (изучаются все объекты);
· Выборочное (несплошное, когда изучается часть объектов).