Если t>tкр то гипотеза Н0 отвергается. Если нет, то делается вывод что нулевая гипотеза не противоречит имеющимся наблюдениям.
Определение: Корреляционной зависимостью между двумя переменными величинами называется функциональная зависимость между значениями одной из них и условным математическим ожиданием другой.
Корреляционная зависимость может быть представлена в виде:
Это уравнение называют уравнением регрессии, а их графики линиями регрессии.
Для отыскания уравнений регрессий необходимо знать закон распределения двумерной случайной величины.
Данные о статистической зависимости удобно задавать в виде корреляционной таблицы.
Вес (кг) (Х) | Середины интервалов | Рост (см) (у) | |||||
155-160 | 160-165 | 165-170 | 170-175 | Всего (ni) | Групповая Средняя | ||
Хi yj | 157,5 | 162,5 | 167,5 | 172,5 | |||
40-45 | 42,5 | 2 | 1 | 7 | 10 | 168,5 | |
45-50 | 47,5 | 3 | 6 | 4 | 6 | 19 | 165,9 |
50-55 | 52,5 | 3 | 11 | 1 | 15 | 166,8 | |
60-65 | 62,5 | 2 | 1 | 2 | 5 | 162,5 | |
70-75 | 72,5 | 1 | 1 | 172,5 | |||
Всего nj | 7 | 11 | 17 | 15 | 50 | ||
Групповая средняя | 50,4 | 49,8 | 52,5 | 47,2 |
Вычисленные групповые средние изобразим графически в виде ломанной, называемой эмпирической линией регрессии.
По виду ломанной можно предположить наличие линейной функциональной зависимости между случайными величинами Х и У, то есть имеется функция y=kx+b, где
Где
выборочная ковариация и равна: К=-46,09 В=2471,02 У=-46,09х+2471,021. В ходе исследования результатов забега на 100 метров юношами одиннадцатых классов двух групп – экспериментальной и контрольной – были получены данные, представленные в таблице.
2.
Время (секунды) | 12,3-13,9 | 13,9-15,5 | 15,5-17,1 | 17,1-17,7 |
Число юношей экспериментальной группы | 3 | 20 | 20 | 2 |
Число юношей контрольной группы | 1 | 8 | 18 | 3 |
1) Изобразить данные графически, построив гистограммы для каждой группы.
2) Для каждой группы определить среднее значение, дисперсию, моду и медиану.
3) Проверить гипотезу о равенстве средних двух групп учащихся, используя критерий Стьюдента и полагая критическое значение статистики 1,67.
Домашняя работа.
В ходе исследования результатов высоты прыжка с места спортсменов – велосипедистов двух групп – экспериментальной и контрольной – были получены данные, представленные в таблице.
Высота прыжка (см) | 37-45 | 45-53 | 53-61 | 61-69 |
Число юношей экспериментальной группы | 4 | 20 | 10 | 1 |
Число юношей контрольной группы | 2 | 15 | 20 | 3 |
1) Изобразить данные графически, построив гистограммы для каждой группы.
2) Для каждой группы определить среднее значение, дисперсию, моду и медиану.
3) Проверить гипотезу о равенстве средних двух групп учащихся, используя критерий Стьюдента и полагая критическое значение статистики 1,67.
Подготовка к контрольной работе.
Комбинаторика:
1. Сколько четырехзначных чисел можно составить из цифр 1, 2, 3, 4, если каждая цифра входит в изображение числа только один раз.
2. Сколько можно составить сигналов из 6 флажков различного цвета, взятых по 2?
3. Сколькими способами можно выбрать 2 детали из ящика, содержащего 10 деталей?
4. Сколько существует двузначных чисел, у которых цифра десятков меньше цифры единиц?
5. В нашем распоряжении есть три различных флага. На флагштоке поднимается сигнал состоящий не менее, чем из двух флагов. Сколько различных сигналов можно поднять на флагштоке, если порядок флагов в сигнале учитывается.
6. В карточке игры «Русское лото» нужно зачеркнуть 6 чисел от 1 до 99. Сколькими способами это можно сделать?
7. Сколько различных имен – отчеств можно составить из имен Надежда, Иван, Андрей, Наталья, Дмитрий, Людмила, Александр?
8. Шесть ящиков занумерованы числами от 1 до 6. Сколькими способами можно разложить по этим ящикам 20 одинаковых шаров так, чтобы ни один ящик не оказался пустым?
Вероятность:
1. В партии 10 из деталей 7 стандартных. Найти вероятность того, что среди шести взятых наудачу деталей 4 стандартных.
2. В конверте среди 100 фотокарточек находится одна разыскиваемая. Из конверта наудачу извлечены 10 карточек. Найти вероятность того, что среди них окажется нужная.
3. В группе 12 студентов, среди которых 8 отличников. По списку наудачу отобраны 9 студентов. Найти вероятность того, что среди отобранных студентов пять отличников.
4. В урне 30 шаров: 10 красных, 5 синих, 15 белых. Найти вероятность появления цветного шара.
5. Стрелок стреляет по мишени, разделенной на 3 области. Вероятность попадания в первую область равна 0,45, во вторую 0,35. Найти вероятность, того, что стрелок при одном выстреле попадет либо в первую область, либо во вторую.
6. Брошены две игральные кости. Найти вероятность того, что: а) на каждой из выпавших граней появиться пять очков. Б) на всех выпавших гранях появиться одинаковое количество очков.
7. Найти вероятность совместного поражения цели двумя орудиями, если вероятность поражения цели первым орудием 0,8, а вторым 0,7.
8. Имеется 3 ящика, содержащие по 10 деталей. В первом ящике 8, во втором 7 и в третьем 9 стандартных деталей. Из каждого ящика наудачу вынимают по одной детали. Найти вероятность того, что все три вынутые детали окажутся стандартными.
9. В урне 5 белых, 4 черных, 3 синих шара. Каждое испытание состоит в том, что наудачу извлекают один шар, не возвращая его обратно. Найти вероятность того, что при первом испытании появиться белый шар, при втором – черный и при третьем – синий.
10. В мешочке имеется 10 одинаковых кубиков с номерами от 1 до 10. Наудачу извлекают по одному три кубика. Найти вероятность того, что последовательно появятся кубики с номерами 1, 2, 3, если кубики извлекаются: а) без возвращения; б) с возвращением.
11. Вероятности попадания в цель при стрельбе из трех орудий: 0,8, 0,7, 0,9. Найти вероятность хотя бы одного попадания при одном залпе из всех орудий.
12. вероятности попадания в цель при стрельбе первого и второго орудий равны 0,7 и 0,8. Найти вероятность попадания при одном залпе хотя бы одним орудием.
13. Имеется два набора деталей. Вероятность того, что деталь первого набора стандартна, равна 0,8, а второго 0,9. Найти вероятность того, что взятая на удачу деталь (из наудачу взятого набора) – стандартная.
14. В первой коробке содержится 20 радиоламп, из них 18 стандартных, во второй коробке 10 ламп, из них 9 стандартных. Из второй коробки наудачу взята лампа и переложена в первую. Найти вероятность того, что лампа, наудачу извлеченная из первой коробки, будет стандартной.
15. Детали, изготовленные цехом завода, попадают для проверки их на стандартность к одному из двух контроллеров Вероятность того, деталь попадет к первому контроллеру равна 0,6, а ко второму 0,4. Вероятность того, что годная деталь будет признана стандартной первым контроллером 0,94, а вторым 0,98. Годная деталь при проверки была признана стандартной. Найти вероятность того, что эту деталь проверил первый контроллер.
16. Батарея из трех орудий произвела залп, причем два снаряда попали в цель. Найти вероятность того, что первое орудие дало попадание, если вероятности попадания цель первым, вторым и третьим орудиями равны: 0,4, 0,3 и 0,5.
Приложение 2
Самостоятельная работа № 1
1. Сколько существует двузначных чисел, у которых цифра десятков меньше цифры единиц?
2. В нашем распоряжении есть три различных флага. На флагштоке поднимается сигнал состоящий не менее, чем из двух флагов. Сколько различных сигналов можно поднять на флагштоке, если порядок флагов в сигнале учитывается.
3. В карточке игры «Русское лото» нужно зачеркнуть 6 чисел от 1 до 99. Сколькими способами это можно сделать?
4. Сколько различных имен – отчеств можно составить из имен Надежда, Иван, Андрей, Наталья, Дмитрий, Людмила, Александр?
5. Шесть ящиков занумерованы числами от 1 до 6. Сколькими способами можно разложить по этим ящикам 20 одинаковых шаров так, чтобы ни один ящик не оказался пустым?
Самостоятельная работа № 2
1. Найти вероятность того, что при бросании трех игральных костей шестерка выпадает на одной (безразлично какой) кости, если на гранях двух других костей выпадут числа очков, не совпадающие между собой (и не равные шести).