Смекни!
smekni.com

Особенности преподавания математики для детей шестилетнего возраста в условиях современной школьной программы (стр. 4 из 7)

Основные темы, с которых начинается изучение математической науки – это натуральный ряд чисел, арабская и римская нумерация, целое и часть, как основа к решению уравнений, задач, развитие устных и письменных вычислений. С самого начала в учебном пособии идет упор на наглядно-образное мышление детей, используется игра «Сколько?» (карточка с изображением кружков от 1 до 10). Легко вводится понятие натурального ряда чисел, учащиеся запоминают образ цифры и соответствующий рисунок. Позже вводится двухцветный вариант игры. Это легко позволяет ребенку усвоить понятие части и целого, что в дальнейшем помогает также спокойно перейти к решению задач. Используя эту игру можно достичь высоких результатов и при формировании вычислительных навыков. Ученики, глядя на карточку составляют ряд простых высказываний на сложение и вычитание. Для числа «9» : 7 + 2 = 9; 2 + 7 = 9; 9 – 2 = 7; 9 – 7 = 2. Ученики представляют данное число в виде частей 2 и 7 и целого – 9. Такие упражнения легко помогают перейти к решению примеров, выполнению проверок, решению примеров с «окошками», которые потом заменяют буквами и к решению задач. В целях усвоения структуры текстовой задачи автором творчески применяется прием перехода от рассказа к задаче.

Работа с алгоритмом позволяет ученику четко определить границы заданного.

Большое количество заданий для каждого уровня позволяет учителю делать выбор, дифференцированно подходить к возможности ученика, к уровню развития каждого.

§ 3. Приемы организации умственных действий на уроках

математики с детьми шестилетнего возраста.

Развитие учащихся во многом зависит от той деятельности, которую они выполняют в процессе обучения. Эта деятельность может быть репродуктивной и продуктивной. Они тесно связаны между собой, но в зависимости от того, какой вид деятельности преобладает, обучение оказывает различное влияние на развитие детей.

Репродуктивная деятельность характеризуется тем, что ученик получает готовую информацию, воспринимает ее, понимает, запоминает, затем воспроизводит. Основная цель такой деятельности – формирование у школьников знаний, умений, навыков, развитие внимания и памяти.

Продуктивная деятельность связана с активной работой мышления и находит свое выражение в таких мыслительных операциях, как анализ и синтез, классификация, аналогия, обобщение. Эти мыслительные операции в психолого-педагогической литературе принято называть логическими приемами мышления или приемами умственных действий.

Включение этих операций в процесс усвоения математического содержания – одно из важных условий построения развивающего обучения. Овладение ими не только обеспечивает новый уровень усвоения, но дает существенные сдвиги в умственном развитии ребенка.

Рассмотрим возможности активного включения в процесс обучения математики различных приемов умственной деятельности приемлемых для детей шестилетнего возраста.

Важнейшими мыслительными операциями являются анализ и синтез

Анализ связан с выявлением элементов данного объекта, его признаков или свойств. Синтез – это соединение различных элементов, сторон объекта в единое целое. В мыслительной деятельности человека анализ и синтез дополняют друг друга, так как анализ осуществляется через синтез, синтез – через анализ. Способность к аналитико-синтетической деятельности находит свое выражение не только в умении выделять элементы того или иного объекта, но и в умении включать их в новые связи, увидеть их новые функции.

Формированию этих умений может способствовать: а) рассмотрение данного объекта с точки зрения разных понятий; б) постановка различных заданий к данному математическому объекту.

Для рассмотрения данного объекта с точки зрения различных понятий или с различных точек зрения, младшим школьникам при обучении математике можно предложить такие задания:

- Как по-разному можно назвать квадрат? (прямоугольник, четырехугольник, многоугольник, ромб)

- По каким признакам можно разложить предметы в коробки? (даны предметы: пуговицы разных размеров, форм, цвета)

- Разгадай правило, по которому составлена таблица и заполни пропущенные клетки:

4

6

9

3

8

6

5

2

5

7

8

2

4

6

Увидев, что в данной таблице две строки, учащиеся пытаются выявить определенное правило в каждой из них, выясняют, на сколько одно число больше (меньше) другого. Для этого они выполняют сложение и вычитание. Не обнаружив закономерность в верхней строке, они пытаются анализировать данную таблицу с другой точки зрения, сравнивая каждое число верхней строки с соответствующим (стоящим под ним) числом нижней строки. Получаем: 4<5 на 1; 6<7 на 1; 9>8 на 1; 3>2 на 1. Если под числом 8 записать число 9, а под числом 6 – число 7, то имеем: 8<9 на 1; 6<7 на 1, значит 5>□ на 1; □>4 на 1.

Прием сравнения играет особую роль в организации продуктивной деятельности шестилеток в процессе обучения математики. Формирование умения пользоваться этим приемом надо осуществлять поэтапно, ориентируясь на такие этапы:

1. выявление признаков или свойств одного объекта;

2. установление сходства различия между признаками двух объектов;

3. выявление сходства между признаками трех, четырех и более объектов.

В качестве объектов можно использовать предметы или рисунки с изображением предметов, хорошо знакомых детям, в которых они могут выделить те или иные признаки, опираясь на имеющиеся у них представления.

Для организации деятельности учащихся, направленных на выявление того или иного признаков, можно сначала предложить такой вопрос:

- Что вы можете рассказать о предмете? (яблоко большое, красное; тыква желтая, большая, с полосками, хвостиком; круг – большой, зеленый; квадрат – маленький, желтый).

В процессе работы учитель знакомит детей с понятиями «размер», «форма» и предлагает им следующие вопросы:

- Что вы можете сказать о размерах (формах) этого предмета?

- В чем сходство и различие этих предметов? – что изменилось?

Возможно познакомить их с термином «признак» и использовать его при выполнении заданий: «Назови признаки предмета», «Назови сходные и различные признаки предметов».

Умение выделять признаки и, ориентируясь на них, сравнивать предметы ученики переносят на математические объекты.

Для организации самостоятельной познавательной деятельности учащихся в подготовительном классе нужно использовать метод наблюдений. В процессе наблюдений ученики анализируют, сравнивают, делают вывод. Полученные таким образом знания являются более осознанными и лучше усваиваются.

Для того, чтобы дети умели последовательно излагать свои мысли, переходя от одного суждения к другому, с первых шагов обучения следует учить их рассуждать. Необходимо, чтобы результаты своих наблюдений дети фиксировали с помощью математической записи. Например: на одной чашке весов гиря в 3 кг, а на другой в 2 кг. Затем на каждую чашку весов добавляются гири по 5 кг. Ход рассуждений фиксируется в записи: 3>2, 3+5>2+5, 5=5. Данное задание позволяет организовать наблюдения учащихся, в процессе которого они самостоятельно приходят к выводам.

Ученик должен осознать практическую значимость сравнения, т. е. сравнение должно быть решением той или иной задачи. С целью проведения работы в данном направлении учитель может использовать следующие задания:

1. 6 + 1 = 7. Сколько надо прибавить к 6, чтобы получить не 7, а 8?

2. 5 + 2 = 7, 2 + … = 7. Какое число надо поставить вместо точек, чтобы второе равенство было верным? Почему?

3. 5 + 3, 5 + 4. Могут ли в данных примерах получиться одинаковые ответы?

Умение выделить признаки предметов и установить между ними сходство и различие – основа приема классификации.

Из курса математики известно, что при разбиении множества на классы необходимо выполнять следующие условия: 1) ни одно из подмножеств не пусто; 2) подмножества попарно не пересекаются; 3) объединение всех подмножеств составляет данное множество. Предлагая детям задания на классификацию, эти условия необходимо учитывать. Сначала выполняются задания на классификацию хорошо известных предметов и геометрических фигур. Например: учащиеся рассматривают предметы: огурец, помидор, молоток, капуста, лук, свекла, редька. Ориентируясь на понятие «овощ», они могут разбить множество предметов на два класса: овощи – не овощи.

Для упражнений в счете детям можно предложить иллюстрации, к которым можно поставить вопросы, начинающиеся со слова «Сколько …?». («сколько больших кругов?», «сколько красных больших кругов» и т. д.)Упражняясь в счете учащиеся овладевают логическим приемом классификации.

Задания, связанные с приемом классификации, обычно формулируются в таком виде: «Разбей (разложи) все предметы на две группы по какому-то признаку». Большинство детей успешно справляются с этим заданием, ориентируясь на такие признаки, как цвет и размер. По мере изучения различных понятий задания на классификацию могут включать числа, выражения, равенства, геометрические фигуры.