• окислительного обжига шихты в присутствии реакционно-способной добавки (Na2C03 или СаС03);
• выщелачивания обожженной шихты водой и раствором серной кислоты;
• осаждения ванадия из растворов в виде химического концентрата V205 или NH4V03;
• сушки, плавки и грануляции химического концентрата V205.
Ванадиевые шлаки поступают на производство в кусках и измельчаются до тонкого порошка с размером частиц менее 0,1 мм. Наличие металлической фазы в шлаках требует их многократной обработки на магнитных сепараторах. Металлоотсев возвращают в начало металлургического процесса или используют для прямого легирования сталей и чугунов.
Одна из важнейших задач обжига ванадиевых шлаков — окисление низших оксидов железа, ванадия и марганца в высшие и образование растворимых соединений ванадия. При обжиге шлаков оксид V2О3 переходит в легкорастворимые соединения ванадия(У), окисляются дисперсное железо, монооксид железа и низшие оксиды марганца, перекристаллизовываются силикаты.
Процесс окисления шлаков может быть представлен следующими основными реакциями:
Оптимальный температурный интервал реакций — от 700 до 900 °С.
Окислительный обжиг шлаков ведут в трубчатых вращающихся печах. Обычно шлаки обжигают в присутствии солей натрия, что позволяет получать ванадаты, хорошо растворяющиеся в воде и разбавленных растворах кислот и карбонатов. Обжиг шлаков совместно с содой позволяет осуществлять процесс при более низких температурах, чем при добавлении других солей натрия.
Шихта из обжиговой печи с температурой от 550 до 620 °С поступает в барабанный холодильник, где орошается водой или оборотным раствором. Одновременно с охлаждением в барабане происходит измельчение спека до 0,15 мм помещенными в барабан металлическими катками.
Выщелачивание шихты начинается в барабанном холодильнике. Пульпа, проходя ряд насосов и реакторов с мешалками, выщелачивается и поступает на вакуум-фильтр. После фильтра раствор направляют на осаждение концентрата V205, а твердый остаток влажностью до 20 % — на сернокислотное выщелачивание. Применение серной кислоты как выщелачивающего реагента связано с тем, что разбавленные растворы этой кислоты в меньшей степени, чем другие минеральные кислоты, растворяют сопутствующие ванадию компоненты шлака.
Трехстадийное выщелачивание позволяет перевести в растворы 97,5-99,0 % V205, в том числе около 65 % на стадии водного выщелачивания.
Существующие способы выделения ванадия из растворов позволяют осадить его в виде химического концентрата, в состав которого входит один или несколько металлов или аммонийная группа NH. При осаждении V205 происходит нейтрализация щелочных растворов минеральными кислотами, а кислых — содой до рН 1,5-2,0. Затем раствор нагревают до 85-95 °С и выдерживают. При этом из него выпадает красно-коричневый осадок. Процесс осаждения пятивалентного ванадия можно представить в общем виде следующими реакциями:
Фильтрацию гидратной пульпы проводят на барабанных вакуум-фильтрах. Сырой остаток, содержащий около 60 % влаги, загружают в плавильную печь. Плавление осадка происходит при температурах 950-1100 °С. Расплавленный продукт вытекает через отверстие на боковой стенке плавильной печи по железному желобу на охлаждаемую водой вращающуюся поверхность стола, на котором застывает тонким слоем. С помощью съемного ножа слой разделяют на небольшие пластинки и направляют их в контейнеры.
Химический концентрат, содержащий после сушки до 92 % V205, используют для выплавки феррованадия и других сплавов. Феррованадий (35-80 % V) получают восстановлением ферросилицием или алюминием.
Гидрометаллургический способ предусматривает извлечение ванадия химическим выщелачиванием из обожженных титано-магнетитовых и ильменит-магнетитовых концентратов. Этот метод предъявляет жесткие требования к качеству перерабатываемых руд: высокое содержание ванадия в исходной руде и низкое — примесей.
Гидрохимический способ — это переработка вторичных материалов техногенного происхождения, таких, как отработанные ванадийсодержащие катализаторы, нефтяные остатки, нефтяной кокс, асфальтиты, зола от сжигания мазута, шлаки феррофосфорного производства, отходы переработки уран-ванадиевых руд и др.
Извлечение ванадия при этом осуществляется по различным гидрохимическим технологиям. Этот способ используют главным образом американские производители, а также в Великобритании и Японии. На его долю приходится около 10 % производимого ванадия. В настоящее время он является наиболее дорогостоящим.
Развитие технологий извлечения ванадия из вторичных материалов в США и Великобритании обусловлено в основном отсутствием в этих странах рудной базы ванадийсодержащего титаномагнетитового сырья. Кроме того, учитывается и наличие большого количества отходов других производств с высоким содержанием ванадия (до 50 %), а также жесткие экологические требования и высокие платежи за загрязнение окружающей среды.
ИСПОЛЬЗОВАНИЕ ТЕХНОГЕННЫХ РЕСУРСОВ
Структура ресурсов ванадия в нашей стране определяется наличием больших запасов ванадийсодержащих титаномагнетитовых руд. В связи с высокой стоимостью переработки и сложностью технологической схемы передела этих руд в настоящее время стала актуальной задача разработки технологий и создания производств по выпуску ванадиевой продукции из техногенного ванадийсодержащего сырья.
К ванадиевым ресурсам техногенного происхождения относятся золы и шлаки тепловых электростанций, отработанные катализаторы сернокислотного производства, шламы титанового и глиноземного производств, попутные продукты и вторичные материалы ванадиевого и феррованадиевого производств.
Один из видов такого сырья — материалы, образующиеся в котлоагрегатах ТЭС, сжигающих ванадийсодержащие мазуты и нефтеводяные эмульсии. В результате оксидные соединения ванадия концентрируются в зольных остатках, оседающих на поверхностях нагрева, или в шламах, образующихся в обмывочных растворах.
В некоторых странах ванадийсодержащие ЗШО ТЭС активно вовлекают в производственную сферу. В Канаде, США и Венесуэле ванадий, а также никель получают не только из нефти и битума, но и из ВЗШО, полученных в результате сжигания на ТЭС нефтепродуктов. Наиболее развито применение техногенного ванадийсодержащего сырья в Японии. Доля ванадийсодержащих нефтяных остатков, летучей золы, образующейся в топках, работающих на мазуте, и отработанных катализаторов в производстве феррованадия в Японии достигает 30 %.
В России переработка ВЗШО ТЭС в промышленных масштабах до сих пор не освоена. Если учесть все золоотходы, полученные при сжигании органического топлива за последние два-три десятилетия, то количество техногенного сырья окажется достаточным для производства около 100 тыс. тонн металлического ванадия. Количество этого сырья с каждым годом возрастает, несмотря на то, что практически все ТЭС в России не оборудованы системами пылеулавливания и до 90 % ванадия теряется в виде выбросов в атмосферу.
Таким образом, использование золошлаковых отходов продиктовано не только возможностью извлечения ванадия. Попутно может быть решена важнейшая экологическая задача утилизации отходов, занимающих значительные площади и представляющих опасность для окружающей среды, так как при взаимодействии с атмосферными осадками эти отходы выделяют в гидросферу токсичные органические вещества и тяжелые металлы.
Принимая во внимание истощение сырьевой базы и учитывая тот факт, что с каждым годом технологии переработки техногенного сырья совершенствуются, а затраты на производство V205 с использованием вторичного сырья постепенно приближаются к стоимости производства по традиционным технологиям, можно с уверенностью утверждать, что структура производства ванадия будет изменяться в сторону использования техногенных материалов.
ГЛАВА 3. МЕТОДИЧЕСКИЕ РАЗРАБОТКИ ПО ТЕМЕ "ВАНАДИЙ И ЕГО СОЕДИНЕНИЯ"
Тема. Ванадий.
Цель: повторить и обобщить сведения о свойствах, способах получения и применении ванадия и его соединений.
Оборудование: Периодическая система химических элементов Д.И. Менделеева (приведена в электронном учебном пособии).
Содержание урока соответствует части IV.9 электронного учебного пособия.
Знакомство с химией ванадия и его соединений следует начать с исторической справки. Ванадий был открыт в 1830 г. шведским химиком и минералогом Н. Сефстремом в железной руде из Таберга (Швеция). В чистом виде выделен в 1869 г. английским химиком Г. Роско при взаимодействии водорода и хлористого ванадия.
Охарактеризовать положение ванадия в Периодической системе химических элементов Д.И. Менделеева. Ванадий расположен в 5 группе Периодической системы химических элементов Д.И. Менделеева. Ванадий – d-элемент. Валентные электроны атома ванадия имеют электронную конфигурацию 3d34s2. В соединениях ванадий проявляет степени окисления +2, +3, +4, +5. Соединения ванадия (II) проявляют преимущественно основные свойства, ванадия (III) и (IV) – амфотерные, соединения ванадия (V) – кислотные.
Остановиться на распространенности ванадия в земной коре: ванадий – довольно распространенный элемент, но его минералы не встречаются в виде крупных месторождений, ванадий относится к рассеянным элементам. Ванадий встречается в нефти, битумах, углях, содержится в морской воде и осадочных породах.
При изучении физических свойств ванадия отметить, что ванадий – серебристо-белый металл, пластичен, при нагревании на воздухе выше 300 °С становится хрупким, примеси кислорода, водорода и азота резко снижают пластичность ванадия, придают ему твердость и хрупкость. На воздухе покрывается прочной оксидной пленкой.