2. Проверка уровня знаний, умений и уровня познавательной самостоятельности учащихся.
Примеры билетов – приложение 3.
В каждой группе есть таблица учета (Таблица 7), в которой отмечается результат работы школьников: ставится оценка за ответ на каждый билет.
Таблица 7
Зада- ния Фамилия | № I | № II | № III | № IV | № V | № VI | №VII | №VIII | Итог |
1. Ученик | |||||||||
… | |||||||||
8. Ученик |
Критерии оценивания:
«3» - полностью выполнено одно задание из карточки.
«4» - полностью выполнено одно задание и приводится идея решения второго задания из карточки.
«5» - выполнены оба номера.
3. Подведение итогов урока.
Выставляются оценки по листу контроля по следующим критериям:
«3» - если 5 карточек и более выполнены на оценку «3».
«4» - если 5 карточек и более выполнены на 4, или одинаковое количество оценок «3» и «5», остальные итоги «4».
«5» - если 4 и более карточек выполнено на «5», остальные – на оценку «4».
Даются рекомендации каждому ученику, на что ему обратить внимание при выполнении домашнего задания.
4. Домашнее задание.
Группы меняются заданиями и распределяют каждому ученику по 2-3 билета, с учетом трудностей, возникших во время работы на уроке, а также по свободному выбору.
Объявляется, что на следующем занятии будет зачет по материалу всего курса.
Литература: [1], [3], [4], [9], [17], [18], [21], [25], [28].
Занятие XIII. Зачет
Цель: выявить уровень овладения учащимися знаниями и умениями на элективном курсе «Квадратные уравнения и неравенства с параметром».
Ход занятия:
1. Организационный момент.
Работа составлена по типу контрольно-измерительных материалов единого государственного экзамена, который предстоит пройти по окончании школы.
Учащимся предлагается пройти компьютерное тестирование по теме «Квадратные уравнения и неравенства с параметром». В работе представлено четыре задания уровня А, с выбором ответа, пять заданий уровня Б, где требуется написать свой ответ. Выполнение данных упражнений осуществляется с помощью компьютера. Подводится предварительный итог. Далее учащиеся на отдельном листе выполняют два задания уровня С, где требуется привести подробное решение. После их проверки учителем выставляется итоговая оценка.
2. Проверка уровня знаний и умений, уровня познавательной самостоятельности учащихся. Итоговая контрольная работа (Приложение 4).
3. Подведение итогов урока.
Ученикам сообщается, что окончательные результаты работы будут объявлены на следующем занятии.
Выясняется мнение учеников о проведенной зачетной работе.
4. Постановка домашнего задания.
На следующем занятии – конференция по подведению итогов изучения курса. Класс делится на группы по 5-6 человек. Задача каждой группы подготовить выступление, в котором укажут, что было интересным при изучении, что сложным; что понравилось, что нет; какие предложения могут внести по усовершенствованию курса. Каждый ученик должен представить папку с задачами.
Литература: [16], [22], [25].
Занятие XIV. Конференция по подведению итогов изучения курса.
Цель: подведение итогов изучения элективного курса;
Ход занятия:
1. Организационный момент: сообщение целей и плана занятия.
2. Выступление учащихся.
2.1. Представители от каждой группы рассказывают о составленной в ходе изучения курса папки с задачами, выделяют наиболее интересные темы и задачи, наиболее трудные и легкие для усвоения.
2.2. Каждая группа отмечает «плюсы» и «минусы» данного курса, вносит свои предложения по его изучению.
3. Выступление учителя.
Учитель обобщает все сказанное учениками.
Подводит итоги по табелям баллов: сообщает уровень, на котором ученики освоили данный курс: 1 уровень – более 71 балла; 2 уровень – 41-70 баллов; 3 уровень – менее 40 баллов.
4. Подведение итогов. Вручение ученикам сертификатов, подтверждающих прохождение курса, с отмеченным в нем уровнем освоения курса.
Опытное преподавание осуществлялось в ходе педагогической практики в средней общеобразовательной школе № 1 п. Оричи Кировской области. В качестве основной экспериментальной базы был выбран 9б класс.
Были проведены два занятия из элективного курса «Исследование квадратных уравнений и неравенств с параметром» по темам:
1. Соотношения между корнями квадратного уравнения.
2. Расположение параболы относительно оси абсцисс.
Подробное описание этих занятий содержится в главе 2 (занятия III, V). Отличие представленного в работе занятия III от проведенного на практике в том, что задача, предлагаемая для решения дома, выполнялась учениками самостоятельно на занятии.
Цель проведения занятий – расширить и углубить знания учащихся по теме «Квадратный трехчлен и его свойства»; подготовка учащихся к конкурсным экзаменам по математике; повышение уровня математической культуры.
Несмотря на то, что элективный курс – это курс по выбору, связанный, прежде всего, с удовлетворением индивидуальных образовательных интересов, потребностей и склонностей каждого школьника, на занятиях присутствовал весь класс, так как занятия проводились в рамках времени, отведенного на факультативы, которые в данной школе проводятся в обязательном порядке.
Некоторые школьники уже выбрали математику в качестве основы продолжения своего образования. Они были заинтересованы в рассмотрении предложенных тем, выполнении заданий. Так как на занятиях присутствовал весь класс в обязательном порядке, то среди учащихся были те, у которых нет потребностей и способностей к изучению математики, вследствие чего предложенные задания оказались непосильными и не вызвавшими интереса.
Во время проведения занятий было выявлено, что ученики усвоили тему из школьного курса алгебры «Квадратный трехчлен и его свойства» и имеют представление о том, что такое параметр. Но при выполнении предложенных заданий у школьников возникли затруднения, так как задачи требовали исследовательских навыков, логического мышления, что, как оказалось, у них развито слабо. Это говорит о том, что школьный курс ограничен и не позволяет рассматривать задачи, требующие не только действий по алгоритму.
Самостоятельный поиск решения задачи перед рассмотрением темы «Соотношения на корни квадратного трехчлена» оказался для учеников сложным, но все же позволил школьникам проявить свои способности, заставил задуматься над задачей.
Составление обобщающей таблицы по выделенным самими же учащимися условий расположения графика квадратичной функции в зависимости от коэффициентов соответствующего квадратного уравнения оказалось эффективным.
У некоторых учеников есть склонность к изучению математики, но базовый курс математики не создает условий для подтверждения выбранной траектории обучения в соответствии со склонностями, способностями и потребностями школьника и развития этих способностей.
Таким образом, исходя из проведенного опытного преподавания, можно сделать вывод, что разработанная методика проведения элективного курса «Квадратные уравнения и неравенства с параметром» эффективна.
Элективные курсы – это новейший механизм актуализации и индивидуализации процесса обучения. С хорошо разработанной системой элективных курсов каждый ученик может получить образование с определенным желаемым уклоном в ту или иную область знаний.
Целями данной работы ставились рассмотрение положений по созданию элективных курсов и разработка элективного курса для 9 класса «Квадратные уравнения и неравенства с параметром».
В первой главе рассматривались основные положения по созданию элективных курсов. В частности, разобраны такие вопросы, как типы курсов, мотивы выбора, требования к содержанию, учебно-методический комплекс.
Во второй главе разработана методика преподавания элективного курса «Квадратные уравнения и неравенства с параметром»: представлено подробное описание каждого занятия с применяемыми методами и формами обучения, с примерами заданий, возможными формами контроля усвоения материала школьниками.
В процессе опытного преподавания, согласно разработанной методике, были проведены два занятия из этого курса в 9 классе.
Данный элективный курс может иметь свое продолжение в старшей школе при изучении такого курса, как «Уравнения и неравенства с параметром, сводящиеся к квадратным».
Таким образом, цель данной работы достигнута, сформулированная гипотеза доказана.
На наш взгляд, элективные курсы незаменимы для достижения основных целей образования на старшей ступени школы.
1. Алгебра: Учебное пособие для учащихся 9 класса с углубленным изучением математики [Текст] / Н.Я. Виленкин, Т.С. Сурвилло, А.С. Симонов, А.И. Кудрявцев; Под редакцией Н.Я. Виленкина. – М.: Просвещение, 2001. – 384 c.
2. Болтянский, В.Г., Сидоров Ю.В., Шабунин М.И. Лекции и задачи по элементарной математике [Текст]/ В.Г. Болтянский, Ю.В. Сидоров, М.И. Шабунин – М.: Наука, 1974. – 576 с.
3. Галицкий, М.Л. Сборник задач по алгебре для 8-9 классов [Текст]: уч.пособие для учащихся школ и классов с углубленным изучением математики / М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич. – М.: Просвещение, 1994. – 271 с.
4. Горнштейн, П.И. Задачи с параметрами [Текст]/ П.И. Горнштейн. – Киев: РИА «Текст»; МП «Око», 1992. – 290 с.
5. Горшенина, Т. Задачи с параметром 8 класс [Текст]/ Т. Горшенина // Математика. – 2004. - №16. – С.12-17.