4. Квадратное уравнение – это уравнение, соответствующее квадратному трехчлену (1), Ax +Bх+C=0, где х – переменная, А, В, С - некоторые числа, А 0.
5. Понятие об уравнении с параметром.
Пусть задано уравнение f(x,a)=0. Его называют уравнением с неизвестным х и параметром а, если, в частности, ставится задача найти х для каждого значения а.
Уравнение с параметром – это, по существу, краткая запись множества уравнений, получаемых при различных значениях а.
Пример. Рассматривается серия уравнений:
, , . В общем виде эти уравнения можно записать: , где а – некоторое число, которое называется параметром.3. Решение задач
3.1. Рассмотрение примера решения задачи:
При каких значениях m ровно один из корней уравнения 3х2+х+2m-3=0 равен 0?
Учитель записывает решение на доске и поясняет каждый шаг.
3.2. Решение задач.
- задания 1, 2: каждое задание один из учеников решает на доске, остальные – в тетради. После решения задания 2 ученик с помощью учителя записывает на доске условия, определяющие количество корней квадратного уравнения в зависимости от значения А(а).
- задание 3: учащимся дается время на самостоятельное выполнение задания. После того, как с заданием справилась треть класса, один из учеников, его выполнивших, записывает решение на доске.
Дополнительные задания:
- учащиеся, решающие «вперед», самостоятельно выполняют задания 4-7. В конце занятия производится устная проверка решения этих заданий: рассказывается идея и шаги решения.
Задания.
Основная часть:
1. При каких значениях m ровно один из корней уравнения равен 0:
x2+(m+3)x+m-3=0
2. При каких значениях параметра р уравнение рх - х+3=0 имеет единственное решение?
При решении данного уравнения необходимо учесть, что может быть р=0. В этом случае уравнение также имеет единственное решение.
В общем случае условия существования единственного решения запишутся следующим образом:
илиЕсли
то уравнение не имеет корней.Если
то уравнение имеет бесконечно много решений.3. При каких значениях параметра а уравнение ах -4х+а+3=0 имеет не более одного корня?
Дополнительные задания:
4. При каких значениях а корни уравнения 4х2+(5а-1)х+3а=-а равны по модулю, но противоположны по знаку?
5. Найдите все значения параметра k, при которых уравнение (k-2)x -2kx+2k-3=0 имеет хотя бы один корень?
6. Доказать, что при любом значении а уравнение х2+(а-2)х+(а-3)=0 имеет два корня.
7. При каких значениях параметра а уравнение
имеет единственное решение?4. Подведение итогов занятия:
- Интересными ли явились задания?
- Не являются ли они сложными или, наоборот, простыми?
Выставление учениками самим себе баллов за каждое верно решенное задание (1 задание – 1 балл).
5. Постановка домашнего задания:
Задания, аналогичные задачам, решаемым на занятии:
№1. а) При каких значениях k оба корня уравнения х2+(16-k)х+k+8=0 равны 0?
б) При каких значениях а корни уравнения х2-2х+m-1=0
равны по модулю, но противоположны по знаку?
№2. При каких а уравнение
а) (а -4)х +(2а-4)х-(а-2)=0 имеет не менее одного решения;
б) (а+1)х +2(а+1)х-2=0 не имеет корней.
Задания на самостоятельный поиск решения:
№3. а) Найти корни квадратного уравнения ах2+bх+с=0, если а–b+с=0.
б) При каких значениях параметра а уравнения
равносильны? (Вспомнить, какие уравнения называются равносильными)Литература: [3], [8], [12], [13], [18].
Занятие II. Теорема Виета. Знаки корней квадратного трехчлена
Цель: формирование умения определять знаки корней квадратного трехчлена, применяя теорему Виета.
Ход занятия:
1. Организационный момент. Сообщение темы и целей занятия.
2. Проверка домашнего задания: решение №1, №2 записано учителем на доске, ученики проверяют; №3: один из учеников, выполнивший задание №3а), записывает до начала занятия решение на доске, второй - №3б); затем задания разбираются. Если задания никем не выполнены, то решение объясняет учитель.
3. Обзорная лекция по теме «Теорема Виета. Знаки корней квадратного уравнения».
Теорема Виета: Если дискриминант
(при А 0), то трехчлен Ax +Bх+C имеет корни и , удовлетворяющие соотношениям: (*)И наоборот, если числа
и удовлетворяют соотношениям (*), то они являются корнями квадратного трехчлена Ax +Bх+C.Исходя из теоремы Виета, получаются условия, определяющие знак корней трехчлена (Таблица 3).
Таблица 3.
Знак корней | >0 >0 | 0 0 | <0 <0 | 0 0 | >0 <0 | =0 >0 | =0 <0 |
Условия |
4. Решение задач. Задание 1 решает один из учеников на доске. Затем ученики выполняют задания самостоятельно с последующей проверкой на доске.
Задания:
1. При каком значении параметра а уравнение х2+(3а-5)х-2=0 имеет корни разных знаков?
2. При каком значении параметра а корни трехчлена (а -4)х2+(а+2)х+2 положительны?