Смекни!
smekni.com

Разработка элементов модульной технологии обучения математике в 6-ом классе (стр. 8 из 8)

Летние каникулы пролетели мгновенно и «мы» уже 6 «Б». Если на начало 5-го класса у них знания по математике были приблизительно равные: чуть выше, чуть ниже 3-х баллов (по пяти-бальной). То в начале 6-го уже видны были явные отличия. А здесь еще непонятная и вносящая сметение и страх 10-ти бальная система оценки знаний.(см. Приложение 3)

Скажем так, если Додыркин, Руев, Мохорев, Жилина и др. уже решали свободно большинство заданий, то Серогодский, Шабалин, Шабловская и др. с трудом считали обычные примеры. Например, Шабалин Александр однажды на дополнительный вопрос: «чему равно а квадрат? – напиши на доске ». Он, немного подождав подсказки, нарисовал вначале букву «А», затем вокруг нее изобразил квадрат.

Снова наряду с учебой, мне приходилось вносить воспитательный характер во временные рамки уроков. Где я старалась показать, что математика это наука, которую следует изучать шаг за шагом, ступенька за ступенькой. Иначе если не будет фундамента, то и наросченная сверху башня рухнет. Приводила абсурдные примеры (см. Приложение 4). Именно в это время я и пришла к выводу, что в сложившихся обстоятельствах мне просто необходимо использовать элементы модульной технологии и дифференцированный подход. Я знала, что введение модулей в учебный процесс надо осуществлять постепенно, что можно сочетать традиционную систему обучения с модульной.

3.2 Контролирующий этап.

Начало было более чем плавным. Я подбирала задания на конец урока при закреплении материала по уровням. Например: (см. Приложение 5). Наряду с введением модулей, новые темы, скучные задачи я старалась переделывать на лад сказки или веселой истории яко бы произошедшей у нас в классе.

Следующим нелегальным шагом моей деятельности – стали субботы. Дело в том, что субботы теперь в школах отведены для воспитательной работы, а я на свой страх и риск предложила желающим позаниматься дополнительно без оценок. В субботу минут 40-45 до мероприятия порешаем, если хотите более сложные и ли те математические задания, которые у вас вызывают страх. И в первую же субботу, вооружившись несколькими математическими заданиями, я захожу в класс… Помня беседу в начале 5-го класса (там почти все математику не любили), я была просто шокирована. Пришли все… Весь класс собирался заниматься дополнительно. Отныне каждую субботу мы стали заниматься дополнительно математикой. При чем решали исключительно то, что вызывало затруднения. Разбирали все то, что было не очень понятным и набивали руки подобными примерами.

Ребята смело задавали вопросы и стремились разобраться в самом сложном для них. Теперь у них уровень знаний очень отличался от их же самих прежних. Но и появился еще больший разбег знаний друг между другом.

Для того чтобы был новый материал понятен всем (и более сильным, и более слабым), мне приходилось объяснять нововведения переделывая их на самый простой элементарный лад. А при работе на закреплении подбирать задания приходилось каждому индивидуально. Или, разбив класс на группы, с более слабыми заниматься обычным путем, а более сильным давать задания по карточкам. Карточки составляла из трех уровней. Ребята могли делать выбор сами (интересно то, что на первых порах детки боялись брать высокий уровень и начинали с самого низкого).

Накопляемость оценок была очень велика, т. к. почти каждый ученик почти на каждом уроке получал оценочку. Используя элементы модульной технологии, однажды в качестве домашнего задания ребята получили строгие указания к изучению нового материала самостоятельно… Результат был плачевный – урок не пошел. Но отрицательный результат – тоже результат. Я поняла, что еще рано. Ребята еще не готовы. Или я где-то сделала ошибку, или я слишком многого хочу от них.

Я вернулась к обычному проведению уроков, но сохраняя те новшества, радовали меня успехами.

Ближе к концу 3 четверти начались чудеса. Однажды, придя в класс, я начала объяснение нового материала. Вдруг замечаю, что Токорев Денис не конспектирует, а что-то бубнит себе под нос и слегка размахивает руками. На замечания он не реагировал, продолжал в своем духе. Оказалось, этот мальчик дома составил конспект будущего урока и сверял свои записи в тетради с записями на доске. Данное неожиданное и по существу, и по форме проявление самостоятельной активности учащегося оказалось и весьма результативным. Тщательная проверка реферата, подготовленного Денисом Токаревым, показала практически полное отсутствие ошибок и неточностей, – за исключением отдельных грамматических погрешностей.

На классном часу ребятам 6 «Б» класса предложили заполнить анкету анонимно (т. е. они отвечали «да» следовательно «+», «нет» следовательно «-»). Указывать фамилию имя отчество было не нужно .

По результатам анкеты можно было судить, что всему классу нравился предмет математика и школа для них стала более привлекательной.

Заключение

Благодаря открытости методической системы учителя, заложенной в модуле, добровольности текущего и гласности итогового контроля, возможности свободно осуществлять самоконтроль и выбирать уровень усвоения, отсутствию жесткой регламентации темпа изучения учебного материала, выполняется гуманистический принцип направленности на ребенка. Таким образом создаются благоприятные морально-психологические условия, в которых ребенок ощущает себя свободным, защищенным, уверенным в своих силах.

Осознание учащимися личностной значимости изучаемого и потребности в достижении определенных учебных результатов мотивируется четким описанием комплексной качественной цели, которой может ученик достичь по завершении модуля, критериев уровней усвоения и методической обеспеченностью в их достижении каждым учеником, реальный же результат всецело зависит от самого ученика.

Статус "субъекта", как одного из важнейших показателей личностно-ориентированного обучения, обеспечивается модульной технологией естественным образом, а не по разрешению извне. Он сам планирует способы, темп и место работы. Сам оценивает свои возможности и уровень притязаний. Сам принимает решение о продвижении к следующему уровню.

Потребность в самореализации удовлетворяется, во-первых, возможностью с помощью модуля учиться всегда успешно и, во-вторых, свободой выбора творческой деятельности и нестандартных заданий.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Педагогика: педагогические теории, системы, технологии: Учеб. для студ. высш. и сред. учеб. заведений / С.А.Смирнов, И.Б.Котова, Е.Н.Шиянов и др.; Под ред. С.А.Смирнова. – 3-е изд. – М.: Издательский центр "Академия", 1999. – 512 с.

Селевко Г.К. Современные образовательные технологии: Учебное пособие. – М.: Народное образование, 1998. – 256 с.

Селевко Г.К. Опыт системного исследования педагогических технологий (продолжение) // Школьные технологии. 1997, № 1. – С. 11-35.

Селевко Г.К. Педагогические технологии на основе дидактического усовершенствования и реконструирования материала // Школьные технологии. 1997, № 2. – С. 29-40.

Селевко Г.К. Технологии развивающего обучения // Школьные технологии. 1997, № 4. – С. 22-46.

Стефановская Т.А. Педагогика: наука и искусство. Курс лекций. Учебное пособие для студентов, преподавателей, аспирантов. – М.: Совершенство, 1998. – 368 с.

Гальперин П.Я. Методы обучения и умственное развитие ребенка. – М.: Изд-во МГУ, 1985. – 45 с.

Ильенков Э.В. Об идолах и идеалах. – М: Политиздат, 1968. – 319 с.
(Раздел "Школа должна учить мыслить")

Варенова Л.И., Куклин В.Ж., Наводнов В.Г. Рейтинговая Интенсивная Технология Модульного обучения. – 1993. – 67 с.

Зачеты в системе дифференцированного обучения математике / Л.О.Денищева, Л.В.Кузнецова, И.А.Лурье и др. – М.: Просвещение, 1993. – 192 с.: ил. – (Б-ка учителя математики).

Давыдов В.В. О понятии развивающего обучения // Адукацыя i выхаванне, 1995, № 12. – С. 6-20.

Давыдов В.В. Теория развивающего обучения.– М.: ИНТОР, 1996.–544 с.

Репкина Н.В. Что такое развивающее обучение? Научно-популярный очерк. – Томск: Пеленг, 1993. – 64 с.

Репкина Н.В. Система развивающего обучения в школьной практике // Вопросы психологии. – 1997. – № 3. – с. 40–51.

Ермаков В.Г. Развивающее образование и функции текущего контроля. В 3 частях. – Гомель: ГГУ им. Ф.Скорины, 2000. – 778 с.