Смекни!
smekni.com

Методические особенности изучения темы "Природные источники углеводородов" (стр. 2 из 6)

Для получения высококачественных нефтепродуктов фракции нефти подвергают вторичной переработке. Например, при прямой перегонке нефти выход бензиновой фракции невелик, т.к. основную часть нефти составляют углеводороды с температурами кипения выше 200 °С. Поэтому тяжелые фракции нефти и мазут частично подвергают термическому или каталитическому крекингу, основанному на том, что при сильном нагревании углеводороды становятся неустойчивыми.

В первую очередь разрываются связи между атомами углерода в их молекулах, и образуются углеводороды с меньшей молярной массой. На этом основан метод переработки высококипящих фракций перегонки нефти, который называется термическим крекингом (англ. to crack – колоть, расщеплять). В промышленности термический крекинг проводят, нагревая смесь углеводородов до температуры 500–600 °C. Образуется смесь жидких и газообразных алканов и алкенов, которую разделяют при помощи перегонки. В настоящее время чаще всего проводят каталитический крекинг (обычно на алюмосиликатах), который протекает при более низких температурах, чем термический (450–480 °С). Кроме того, у этого процесса есть еще одна особенность. Наряду с расщеплением углеводородов при каталитическом крекинге происходит изомеризация углеродного скелета. В результате образуются углеводороды с более разветвленным скелетом.

Для получения ароматических соединений используют процесс каталитического риформинга. Алканы нефтяных фракций при температуре 500 °С и повышенном давлении в присутствии катализатора образуют арены и водород:

Заключительной стадией нефтепереработки является смешивание отдельных компонентов для получения товарных топлив и смазочных масел. Рассмотрим, зачем и какие компоненты нужно смешивать, на примере одного из важнейших нефтепродуктов – бензина.


1.4 Бензин: состав, октановое число

Основными компонентами бензина являются углеводороды, содержащие от 5 до 12 атомов углерода в молекуле. Однако состав бензина сильно различается в зависимости от характеристик мотора, для которого он предназначен, завода, на котором он был произведен, и даже климата той страны, в которой он используется. Известно, что существует бензин разных видов. Для некоторых автомобилей подходит, например, бензин марки А-76, тогда как для других он совсем неприемлем – двигатель начинает работать плохо, мотор стучит. Чем же отличаются разные марки бензина и что обозначают числа, используемые при маркировке бензина?

Дело в том, что смесь углеводородов с воздухом обладает способностью к детонации – самопроизвольному взрыву при сжатии. Взрыв вместо равномерного горения приводит к слишком быстрому выделению газов. Из-за ударов взрывной волны появляется стук в цилиндре, мощность двигателя уменьшается, детали быстро изнашиваются. Понятно, что бензин тем лучше, чем сильнее можно сжать газовоздушную смесь без детонации.

Для характеристики качества бензина разработана октановая шкала. Каждый вид автомобильного топлива характеризуется октановым числом. За ноль принята способность к детонации у н-гептана, который детонирует очень легко. Октановое число относительно устойчивого к детонации 2,2,4-триметилпентана, чаще называемого изооктаном, принято за 100.

По этой шкале бензин с октановым числом 92 имеет такие же детонационные свойства, как смесь 92% (по объему) изооктана и 8% гептана. Именно октановое число указывают в маркировке бензина. Чем выше октановое число, тем мощнее может быть двигатель.

Октановое число бензиновой фракции, получаемой непосредственно перегонкой нефти, не превышает 65–70, такой бензин не подходит для современных двигателей. Для повышения октанового числа бензин прямой перегонки смешивают с другими нефтепродуктами, а также добавляют вещества, увеличивающие его детонационную стойкость.

Детонационная стойкость углеводородов зависит от их строения. Более высокие, чем алканы линейного строения, октановые числа имеют разветвленные алканы, а также алкены и ароматические углеводороды. Поэтому к бензину прямой перегонки добавляют продукты каталитического крекинга, в которых высока доля разветвленных углеводородов и алкенов, а также продукты риформинга, содержащие ароматические соединения.

Более дешевый и легкий путь увеличения октанового числа состоит в добавлении к бензину некоторых веществ, изменяющих характер горения топлива. Так, детонационную стойкость бензина увеличивают небольшие количества тетраэтилсвинца Pb(C2H5)4. Такой бензин называют этилированным. Однако при его использовании в окружающую среду из выхлопных газов попадают чрезвычайно вредные для нее и здоровья человека соединения свинца. Во многих странах и большинстве городов России использование этилированного бензина запрещено.

В качестве альтернативы тетраэтилсвинцу производители моторного топлива используют добавки железо- или марганецорганических соединений, толуола. Однако это не лучшее решение.

Твердые продукты сгорания металлорганических соединений загрязняют двигатель и системы каталитической очистки выхлопных газов, приводят к преждевременному выводу их из строя. А толуол можно применять в небольших количествах, т.к. содержание ароматических соединений в бензинах ограничивается законодательством многих стран из-за канцерогенности.

В настоящее время в мире широко распространены антидетонационные кислородсодержащие добавки к моторному топливу, такие, как метилтретбутиловый эфир, этилтретбутиловый эфир, метанол и этанол. При сгорании топлива с этими добавками в выхлопных газах не появляется никаких дополнительных загрязнений и, более того, образуется значительно меньше оксида углерода(II) по сравнению с обычным бензином. Поэтому в некоторых штатах Америки, например в Южной Калифорнии, законодательно установлено, что бензин должен содержать не менее 2% кислорода по массе. Смесь бензина и этилового спирта в США имеет специальное название – газохол (от gasoline – бензин и alcohol – спирт). А наиболее широко применение этанола в качестве топлива распространено в Бразилии, где это экономически оправдано наличием большого количества дешевого растительного сырья – отходов переработки сахарного тростника. Кстати, октановое число этилового спирта значительно больше 100, правда, его теплотворная способность несколько ниже, чем у углеводородных смесей. К сожалению, в России пока применение кислородсодержащих добавок распространено мало.

Регулируется в бензине и содержание летучих компонентов – прежде всего растворенного в нем бутана. Чем холоднее, тем больше должен бензин содержать летучих компонентов, чтобы легче заводился двигатель. А в жару наоборот: количество легколетучих компонентов бензина должно быть минимально – чем больше испарение, тем больше потери бензина при переливании, заправке и т.п. и тем больше пожароопасность. Поэтому состав бензина зависит и от климата, и от времени года.

А еще в состав бензина в небольшом количестве могут входить вещества специального назначения. Это, например, антиоксиданты, замедляющие процесс окисления алкенов бензина, или ингибиторы коррозии, вызываемой водой, содержащейся в топливе или конденсирующейся из воздуха в баке, и антиобледенители.


1.5 Нефтехимия

Создание первых нефтехимических производств было связано с необходимостью найти применение побочным продуктам термического крекинга – этилену и пропилену. В 1920 г. компания «Стандарт Ойл» стала производить из пропилена первый нефтехимический продукт – растворитель изопропиловый спирт, а из этилена – 1,2-дихлорэтан, нашедший широкое применение как растворитель для химической чистки, и этиленгликоль (1,2-этандиол), который до сих пор используется как антифриз. В настоящее время потребность промышленности в алкенах настолько велика, что для получения этилена и пропена специально проводят крекинг фракций нефти при более высоких температурах (около 700 °С). Получают алкены и каталитическим дегидрированием.

Основная часть алкенов в настоящее время идет на производство полимеров. Большое количество этилена перерабатывается в винилхлорид, мономер синтеза поливинилхлорида. Из бутановой фракции перегонки нефти получают бутадиен, используемый для производства резины. Каталитическое окисление бутана в настоящее время является основным методом получения уксусной кислоты.

Фракции нефти, в состав молекул которых входит от 12 до 16 атомов углерода, подвергают каталитическому окислению. Например, из гексадекана С16Н34 можно получить спирт состава С16Н33ОН: