Смекни!
smekni.com

Исторические экскурсы в курсе алгебры 7 класса как средство развития познавательного интереса (стр. 5 из 9)

Ученые средневекового Востока считали основным источником математических знаний "Начала" Евклида. На протяжении 2000 лет "Начала" были образцом дедуктивного строения геометрии. И только в XIXвеке математики остро ощутили, что "Начала" Евклида не удовлетворяют требованиям современной науки. И все же этот труд и его автор оставили неизгладимый след в истории математики, являясь много веков фундаментом геометрических изысканий.

Самостоятельная работа учащихся: найти энциклопедическую справку о Евклиде; найти 2 задачи Евклида и решитьих; что называют "пифагоровыми тройками".

4. Закрепление пройденного материала.

4.1 Выполнение задания № 626 (в) (у доски):

в)

4.2 Выполнение задания № 627 (в) (с комментированием):

в)

4.3 Выполнение задания № 628 (в) (самостоятельно):

в)

4.4 Выполнение задания № 629 (в) (самостоятельно):

в)

Проверка: кто первым решит, записывает ответ на доску.

4.5 Выполнение задания № 634 (а, в) (дополнительно):

а)

в)

5. Д/з № 630 (в), № 631 (в), № 632 (в), № 633 (в).

6. Итог урока.

Анализ урока.

Тип урока - урок закрепления. Цели и задачи урока: повторить формулы сокращенного умножения; отрабатывать навыки рациональных вычислений; развивать математическую речь, активность, внимание, навыки самостоятельности; воспитывать аккуратность, интерес к предмету. Цели и задачи решены. На уроке использовался исторический экскурс о Евклиде. Историческая справка заинтересовала учащихся.

Пробный урок алгебры в 7 классе, МОУ "Кыласовская СОШ"

Тема: Тождества

Цели: - познакомить учащихся с тождествами;

отрабатывать навыки рациональных вычислений;

развивать математическую речь, активность, внимание, навыки

самостоятельности;

воспитывать аккуратность, интерес к предмету.

Оборудование: портрет Франсуа Виет де ла Биготье.

Ход урока:

1. Сообщение темы и целей урока.

2. Работа по теме урока.

Тождество - это равенство, верное при любых допустимых значениях, входящих в его состав переменных.

3. Исторический экскурс о Франсуа Виете.

Франсуа Виет де ла Биготье (1540-1603)

Франсуа Виет был юристом и советником у французских королей Генриха IIIи Генриха IV. Математикой он занимался "в свободное от работы время". Виет внес значительный вклад во все области современной ему математики, но особенно велики его заслуги в развитии алгебры: он был первым, кто начал употреблять алгебраическую символику. Впрочем, его символика не получила широкого распространения. Современная алгебраическая символика в основном ведет свое начало от "Рассуждения о методе" Р. Декарта (1637 г.). В одной из его первых книг "Математические таблицы", опубликованной в 1579 году в Париже, автор говорит о преимуществах десятичных дробей при вычислениях и сам широко их использует.

Франсуа Виет - выдающийся французский математик. Его называют "отцом алгебры". Каждому школьнику известно это имя по знаменитой теореме Виета. В сочинениях Виета подводится своеобразный итог математики эпохи Возрождения. Главным трудом его жизни было сочинение по новой алгебре "Введение в искусство анализа". Виет был первым европейским математиком, который решал числовые уравнения приближенным путем. Его научные открытия легли в основу развития новой науки - аналитической геометрии. Виету принадлежат разложения тригонометрических функций кратных дуг посредством последовательного применения формул для синуса и косинуса сумм двух углов. Труды Виета привели к тому, что алгебра сформировалась как наука о решении уравнений.

Самостоятельная работа учащихся: найти задачуФрансуа Виета и решить ее; что называют тригонометрическими функциями, аналитической геометрией.

4. Закрепление полученных знаний.

4.1 Выполнение № 707 (а, б) (у доски):

а)

(да); б)
(да).

4.2 Выполнение № 708 (а, б) (с комментированием):

а)

является тожеством; б)
является тожеством.

4.3 Выполнение № 709 (а, б) (самостоятельно):

а)

является тождеством; б)
является тождеством.

4.4 Выполнение № 710 (а, б) (с комментированием):

а)

переместительный закон сложения;

б)

сочетательный закон сложения.

4.5 Выполнение № 712 (а, б) (у доски):

а)

б)

5. Д/з № 707-712 (в, г).

6. Итог урока.

Анализ урока.

Тип урока - урок изучения нового материала. Цели и задачи урока: - познакомить учащихся с тождествами; отрабатывать навыки рациональных вычислений; развивать математическую речь, активность, внимание, навыки самостоятельности; воспитывать аккуратность, интерес к предмету. Цели и задачи урока решены. На уроке использовался исторический экскурс о Франсуа Виете. В качестве дополнительного домашнего задания учащимся была предложена самостоятельная работа. Исторический материал заинтересовал учащихся.

Пробный урок алгебры в 7 классе, МОУ "Кыласовская СОШ"

Тема: Координатная плоскость

Цели: - повторить понятие координатной прямой, координаты точки, виды

числовых промежутков;

развивать математическую речь, активность, внимание, навыки

самостоятельности;

воспитывать аккуратность, интерес к предмету.

Оборудование: портрет Рене Декарта.

Ход урока:

1. Подготовка учащихся к восприятию нового материала (фронтальная работа с классом).

1.1 Что называют координатной прямой?

Координатной прямой называют прямую, на которой выбрано начало отсчета, единичный отрезок и указано направление.

1.2 Что называют координатой точки?

Число, определяющее положение точки на прямой, называется координатой точки.

1.3 Какие виды числовых промежутков вы знаете?

Числовые промежутки: луч, открытый луч, интервал, отрезок, полуинтервал.

2. Сообщение темы и целей урока.

3. Изучение нового материала.

Проведем 2 взаимно-перпендикулярные координатные прямые и будем считать началом отсчета на обеих прямых точку их пересечения - точку О. тем самым на плоскости задана прямоугольная система координат, которая превращает обычную плоскость в координатную.

Как называют точку О?

Точку О называют началом координат.

Координатные прямые (ось х и ось у) называют осями координат, а прямые углы, образованные осями координат, называют координатными углами. Обозначаются координатные углы так: I, II, III, IV.

Координата х называется абсциссой, а у - ординатой. Абсциссу и ординату отделяют точкой с запятой.

Горизонтальную координатную прямую называют осью абсцисс, а вертикальную координатную прямую - осью ординат.

4. Исторический экскурс о Рене Декарте.

Рене Декарт (1596-1650)

Великий французский ученый Рене Декарт родился в 1596 году на юге Франции в небогатой дворянской семье. Когда Рене исполнилось восемь лет, отец отправил его учиться в католический колледж в городе Ла Флеш.

Обучение в школах того времени было оторвано от реальной жизни. Оно опиралось на церковные догмы и авторитет античных мудрецов, прежде всего Платона и Аристотеля. Неудивительно, что активно мыслящим ученикам, к числу которых относился Декарт, такое знание представлялось недостоверным и неполным.

Окончив колледж, Декарт сменил немало занятий. Светская жизнь, служба в армии, путешествия помогли ему восполнить тот отрыв от реальности, который был создан в школьные годы.

В 1628 году Декарт поселился в Голландии - стране, недавно пережившей национально-освободительную буржуазную революцию и ставшей одним из самых передовых государств того времени. В Голландии издавались сочинения авторов, во многом расходившиеся с церковным учением, в том числе книги Коперника и Галилея.

Декарт прожил в Голландии двадцать лет. Именно там, в 1637 году вышла в свет его знаменитая книга "Рассуждения о методе". В ней Декарт сформулировал четыре принципа, которым должен следовать ученый:

1) включать в свои суждения только то, что представляется уму так ясно и отчетливо, что никоим образом не может дать повод к сомнению;

2) делить каждую из рассматриваемых трудностей на столько частей, сколько потребуется, чтобы лучше их разрешить;