Изучение теоремы умножения вероятностей начинается введения понятия «условной вероятности» Введению этого понятия предшествует обсуждение вопроса зависимости них событий от других. По определению, событие называется зависимым от событий В1,В2, Bk, если вероятность события зависит от того, произошли или не произошли события В1, В2, Bk. противном случае событие называется независимым. Если события В1, В2, Bk произошли, то вероятность события вычисленная при этих условиях, называется условной обозначается (В1, В2, Bk) Если вероятность события вычисляется вне связи событиями B1,B2, Bk, то она называется безусловной. Таким образом, получаем, что если событие зависит от события то (│ (если не зависит, то (│ (
Рассмотрим пример, позволяющий уяснить смысл понятия условной вероятности.
Пример: урне белых черных шара. Определить вероятность того, что два последовательно вынутых шара окажутся разных цветов, если один из них белый.
Пусть событий «оба вынутых шара разных цветов» «один из шаров белый» принятых обозначениях ставится задача вычисления вероятности задачах на вычисление условных вероятностей важно правильно определить полную группу событий. В данном примере полная группа событий включает все различные пары, содержащие хотя бы один белый шар. Так как количество шаров невелико, полную группу событий можно задать перечислением: где событие, состоящее том, что извлечен первый белый второй черный шар. Следовательно, искомая вероятность соответствии классическим определением равна
Теперь можно переходить формулировке теоремы умножения вероятностей. Вероятность произведения двух событий равна произведению вероятности одного события на условную вероятность другого при условии, что первое событие произошло:
Необходимо подчеркнуть, что общем случае доказать эту теорему невозможно, теории вероятности она вводится как правило. Существует лишь толкование этой формулы.Из доказанной теоремы получаются следствия:
•симметричность независимости событий если событие не зависит от события то событие не зависит от события
•если события независимы, то (ВА)
Рассмотрим пример применения теоремы умножения вероятностей.
Пример ящике находятся белых черных шара. Последовательно вынимаются два шара без возвращений. Определить вероятность того, что оба шара белые. Рассмотрим следующие события «первый шар белый» «второй шар белый» Требуется определить вероятность события =АВ. соответствии теоремой (АВ) Определим соответствующие вероятности ак как при извлечении первым белого шара количество белых шаров урне станет при общем числе шаров.
Для иллюстрации применений теоремы умножения вероятностей случае независимых событий можно рассмотреть следующий комплексный пример.
Изученные теоремы дают возможность получить важные утверждения теории вероятностей формулу полной вероятности формулу Байеса.
Рассмотрим систему из попарно несовместных событий В1, В2, Bk, образующих полную группу событий, где невозможное событие. Пусть дано событие удовлетворяющее равенству В1А В2А BkA. Показав попарную несовместность событий В1 В2А, BkA, найдем вероятность наступления события Любое событие, входящее обязательно входит некоторое, но одно Вi так как B1B2, Вk образуют полную группу, тогда. Полученная формула называется формулой полной вероятности. Довольно часто можно встретить подходы, при которых события Btназываются гипотезами обозначаются Нi, тогда формула полной вероятности может быть переписана.
Иллюстрацию формулы полной вероятности легко провести на основе рассмотренного ниже примера.
Пример: ящике находятся белых черных шара. Последовательно вынимаются два шара без возвращений. Определить вероятность того, что на втором шаге появится черный шар. На первом шаге может появиться как белый, так черный шар. Рассмотрим следующие события: событие В1 «первый шар белый» событие В2 «первый шар черный» событие «второй шар черный» По формуле полной вероятности:Требуется определить вероятности событий (В1) (В2) (/В1) (/В2) Вероятность на первом шаге извлечь белый шар (В1) вероятность на первом шаге извлечь черный шар (В2) вероятность того, что на втором шаге появится черный шар, если на первом шаге был извлечен белый (/В1) вероятность того, что на втором шаге появится черный шар, если на первом шаге был извлечен черный шар (/В2) тогда по формуле полной вероятности:
Как правило, вместе формулой полной вероятности соответствии логикой вопроса изучается формула Байеса, так как она дает решение обратной задачи. Проводится испытание, результате которого произошло событие Какова вероятность того, что этом испытании произошло событие Вi
Методика изучения понятия «случайная величина»
Изучение основных характеристик случайных величин
Понятие «случайная величина» третье фундаментальное понятие теории вероятностей. Без знаний учащихся области элементов математического анализа корректное изучение этого понятия его свойств не представляется возможным. Можно остановиться лишь на изучении дискретной случайной величины. При достаточном уровне математической подготовки учащихся есть возможность более детально изучить определение свойства непрерывных случайных величин.
Ввести определение случайной величины желательно конкретно-индуктивным способом. Рассмотрев ряд примеров случайных величин (число выпавших очков при бросании игровых костей, число голосов, набранных кандидатами, результат измерения формулируется определение понятия случайной величины (переменная, которая принимает числовые значения зависимости от исхода некоторого опыта; обозначение подчеркивается, что случайная величина принимает числовые значения, которые заранее неизвестны. Другой подход определению функциональный. Случайную величину можно рассматривать как функцию элементарного события областью определения (множество событий)
Таким образом, представлена методика работы при использовании элементов теории вероятностей классе.
На основании этого можно сделать вывод, что ознакомление школьников элементами теории вероятностей повышает интерес предмету, следовательно, повышается эффективность обучения, которое может проводиться на факультативных занятиях.
Так как при анализе учебников математики анкетировании учителей Кунгура было выявлено, что данная тема рассматривается недостаточно, лишь учебнике математики класса Дорофеева (приложение Автором данной работы была разработана программа факультативного курса по теории вероятностей курсе математики класса.
Заключение
На современном этапе обучения школьный курс математики стали вводиться элементы теории вероятностей.
В настоящее время она завоевала очень серьезное место науке прикладной деятельности. Сейчас без достаточно развитых представлений случайных событиях их вероятностях невозможно полноценно работать физике, химии, биологии, управлять производственными процессами.
Значение теории вероятностей современной науке практической жизни понято достаточно хорошо представителями ряда научных дисциплин. Но эта наука имеет очень важное методологическое значение, поскольку она вводит круг новых, гораздо более широких закономерностей, которые позволяют описывать явления окружающего нас мира полнее глубже. Познакомить этими закономерностями еще школьном возрасте является важной задачей, поскольку позднее переделать психику на новый способ мышления гораздо сложнее.
Поскольку многие задачи элементами теории вероятностей доступны ученикам, интересны им, то их необходимо включать учебники. Они привлекают ребят делают уроки многообразными интересными.
Целью формирования развития математических способностей школьников их интереса математике будет актуальна такой способ обучения как факультативный курс.
Факультативные занятия школьники посещают по желанию, следовательно, педагогу необходимо создать условия, при которых способные ученики смогут реализовать свои возможности, остальные учащиеся смогут решать посильные для них задачи или, пользуясь помощью учителя, более трудные задания.
В ходе работы было рассмотрено два определения теории вероятностей: классическое статистическое. Для решения задач по теории вероятностей следует применять следующие теоремы: сложения вероятностей несовместимых событий, умножения вероятностей, сложений вероятностей совместимых событий; формулы: полной вероятности, Бейеса (Байеса)
И также изучена различная литература, разработаны проведены уроки. На основании этого можно сделать вывод, что ознакомление школьников элементами теории вероятностей повышает интерес предмету, следовательно, повышается эффективность обучения. Однако эффективность может быть достигнута лишь том случае, если учитель понимает осознает эффективность такого обучения.
Также была представлена методика работы при использовании элементов теории вероятностей классе.
В ходе работы был проведен анализ учебников математики. Выявлено, что лишь учебнике математики класса под редакцией Дорофеева раскрывается материал по данной теме.
Было проведено анкетирование учителей разных школ города, по итогам которого можно сказать, что задания по данной теме используются недостаточно, хотя играют большую роль развитии логического мышления.
Таким образом, была разработана программа факультативного курса по теории вероятностей курсе математики класса; изучена методическая научная литература по данной теме; показана методика работы при использовании элементов теории вероятностей на уроках математики школе; подобрана система задачупражнений, направленных на изучение данной темы. Следовательно, цель реализована, задачи решены.