Смекни!
smekni.com

Использование информационных технологий в обучении информационному моделированию учащихся старших классов в рамках элективного курса информатики (стр. 14 из 18)

На этапе перехода от формализованной схемы к математической модели необходимо перейти от абстрактной формулировки к формулировке, имеющей конкретное математическое наполнение. В этот момент модель предстанет перед нами в виде уравнения, системы уравнений, неравенств, матриц, дифференциальных уравнений и т.д.

В беседе следует подчеркнуть тот факт, что математическое моделирование отнюдь не всегда требует компьютерной поддержки. Каждый специалист, профессионально занимающийся математическим моделированием, делает все возможное для аналитического исследования модели. Аналитические решения (т.е. представленные формулами, выражающими результаты исследования через исходные данные) обычно удобнее и информативнее численных. Возможности аналитических методов решения сложных математических задач, однако, очень ограничены и, как правило, гораздо сложнее численных. Поэтому при проведении занятий по КММ в школе следует пользоваться численными методами, реализуемыми на компьютерах. Это создает определенное методическое единстве курса и заметно снижает барьер необходимой математической подготовки учащихся. Разумеется, и в численные методы при профессиональном занятии математическим моделированием приходится углубляться настолько, что при этом, требуется значительное математическое образование, но можно попытаться в школьной практике ограничиться лишь простейшими из них.

И, наконец, после изучения этого раздела учащиеся должны уяснить подходы к классификации компьютерных математических моделей. Как известно, бывают классификации моделей по используемому математическому аппарату, по отраслям наук и т.д. Наиболее органичной представляется классификация по целям моделирования. Действительно, выделение целей моделирования — это первое, что необходимо сделать перед содержательным описанием и формализацией объекта (процесса), и в конечном итоге именно цели моделирования определяют, какая модель будет построена. При этом важно подчеркнуть, что в зависимости от целей моделирования и выбранных факторов для одного и того же процесса можно получить существенно различающиеся математические модели. Учителю следует привести примеры постановки задач, приводящих к моделям, относящимся к основным классам: дескриптивным, оптимизационным, многокритериальным, игровым, имитационным.

3.2.5 Тема «Моделирование физических процессов»

Эта тема фигурирует в нескольких вариантах курса компьютерного моделирования. Причина — традиции и относительная простота решаемых задач, их близость школьному курсу физики.

Как правило, эта тема является началом к изложению компьютерного моделирования в физике. Поэтому ей может предшествовать вводная лекция (беседа) о компьютерном моделировании физических процессов в целом.

В начале на ряде примеров проиллюстрируйте утверждение, что физика — наука, в которой математическое моделирование является чрезвычайно важным методом исследования. Причину этого в целом можно сформулировать так: при максимальном проникновении в физику математических методов, порой доходящем до тактического сращивания этих наук, реальные возможности решения возникающих математических задач традиционными методами очень ограничены.

Во многих вариантах курса компьютерного моделирования математические модели в физике по праву занимают больший объем по сравнению с другими, и на их изучение отводится большее количество времени, действительно, создание той или иной модели физического процесса является естественным и не требует некоторых искусственных приемов, к которым часто приходит прибегать в других предметных областях. Поэтому восприятие этих математических описаний процессов или явлений не вызывает у учащихся, по крайней мере, психологических трудностей. В профильном курсе, ориентированном на учащихся, специализирующихся по физико-математическому и естественнонаучному профилю, целесообразно наибольшее внимание уделить именно моделям физики.

Перечень рассматриваемых вопросов может быть таков:

• движение тел с учетом сопротивления среды;

• движение маятника с учетом сопротивления среды, вынужденные колебания, резонанс и т.д.

• движение небесных тел (задача двух тел);

• движение электрических зарядов;

• тепломассоперенос (на примере процесса теплопроводности в линейном стержне).

Номенклатура компьютерных математических моделей в физике может ориентироваться на подготовленность и интересы учащихся, их специализацию в том или ином разделе физики.

Цели обучения КММ:

• дать общие представления о КММ на примере моделей из области физики;

• отработать схемы вычислительного эксперимента на сравнительно простых, знакомых по курсу физики задачах.

Поставленные задачи обучения считаются успешно выполненными, если у учащихся вырабатывается комплекс указанных ниже знаний, умений и навыков.

Изучение каждой новой содержательной задачи и, как следствие, получение новой математической модели требует мотивировки целесообразности ее введения. Мотивировка может, во-первых, опираться на жизненный опыт учащихся, во-вторых, достигаться путем разрешения проблемной ситуации. Моделирование процессов движения тел в среде. При моделировании процесса движения тела, прежде всего, целесообразно рассмотреть традиционные для школьного курса физики динамические модели, но с учетом сопротивления среды. Это свободное падение тела, полет тела, брошенного под углом к горизонту, движение тела с переменной массой. При этом составляющие силы сопротивления можно рассмотреть предварительно перед изучением конкретных моделей либо в ходе построения одной из моделей.

Более детально обсудим методику построения компьютерных математических моделей физических процессов и их последующего исследования на примере нескольких задач.

Первая из них — моделирование свободного падения тела с учетом сопротивления среды. Основная дидактическая роль этой наиболее простой задачи практическое знакомство с этапами компьютерного математического моделирования, освоение этих этапов, приобретение навыков формулирования и разрешения учебных проблем, проблемных ситуаций. Несмотря на то, что на первый взгляд она является простой, при ее исследовании придется решить ряд серьезных проблем, о чем будет сказано ниже.

В ходе обучения обязательно придется пользоваться понятиями «предел» и «производная». Понятие «предел» не вызывает существенных затруднений; в контексте данного обсуждения вполне достаточно интуитивного понимания предела, сформированного у учащихся к 10 классу.

Не совсем так обстоит дело с понятием «производная». Возможны две ситуации:

1)учащиеся вполне владеют понятием и дифференциальная форма записи второго закона Ньютона (и последующих при решении конкретных задач дифференциальных уравнений) будет им понятна (при этом никакой техники дифференцирования, тем более решения дифференциальных уравнений, не требуется);

2)учащиеся не знакомы с этим понятием; в этом случае необходимо сделать математическое отступление и пояснить понятие «производная», на что, как показывает опыт, вполне достаточно одного урока.

Другая методическая проблема, которую необходимо решить, — строить модели динамических процессов в виде дифференциальных или конечно-разностных уравнений. Как показывает практика, учащиеся физико- математических классов вполне способны воспринять дифференциальные уравнения и численные методы их решения, для этого достаточно ввести дифференциальные уравнения и объяснить простейшие численные методы их решения, базируясь на физическом и геометрическом смысле производной.

При использовании численных методов интегрирования дифференциальных уравнений разумно рассмотреть явные схемы невысокого порядка (не выше второго); если кто-либо из учащихся проявит интерес именно к методам решения систем дифференциальных уравнений и их устойчивости, то следует предложить им самостоятельно изучить литературу, где излагаются явные методы более высокого порядка либо неявные схемы. Такой подход подтвердил свою жизнеспособность.

При изучении динамических процессов в менее подготовленной аудитории рекомендуется ограничиться конечно-разностными уравнениями. Любую модель из рассмотренных ниже можно сформулировать в конечноразностном виде, вообще не упоминая о дифференциальных уравнениях (примеры далее приводятся).

Свободное падение тела с учетом сопротивления среды. В этой и многих других физических задачах, на основе которых строятся модели, фундаментальную роль играет второй закон Ньютона — снова динамики.

Приведенное рассуждение является типичным для этой темы обоснованием перехода от дискретного к непрерывному.

Далее отмечаем, что при реальных физических движениях тел в газовой или жидкостной среде трение накладывает огромный отпечаток на характер движения. Очевидно, что предмет, сброшенный с большой высоты (например, парашютист, прыгнувший с самолета), вовсе не движется равноускоренно, так как по мере набора скорости возрастает сила сопротивления среды.

Поясните учащимся, что закономерности, связывающие силу сопротивления со скоростью движения тела, носят эмпирический характер и отнюдь не имеют столь строгой и четкой формулировки, как второй закон Ньютона. Приведите эти закономерности (при этом вполне достаточно ограничиться линейной и квадратичной по скорости составляющими силы сопротивления):


Рассмотрим свободное падение с учетом сопротивления среды. Математическая модель движения — это уравнение второго закона Ньютона с учетом двух сил, действующих на тело — силы тяжести и силы сопротивления среды, движение является одномерным; проецируя векторное уравнение на ось, направленную вертикально вниз, получаем: