Компьютерная модель:
Проверка таблицы умножения | ||||
Чему равно произведение | 4 | * | 6 | ? |
Ваш ответ | 15 | |||
Ошибка |
Для вычисления сомножителей применяются формулы:
=ОКРУГЛ(СЛЧИС()*9;0)
Для проверки результата используется формула:
=ЕСЛИ(ИЛИ(ЕПУСТО(В2);ЕПУСТО(D2);ЕПУСТО(ВЗ));"";ЕСЛИ(В2*D2=ВЗ;"правильно";"ошибка"))
Самостоятельная работа.
Постановка задачи:
Смоделируйте выбор наугад двух костей домино из полного набора костей этой игры (0-0, 0-1, ..., 6-6). Определить, можно ли приставить эти кости одна к другой в соответствии с правилами домино.
Информационная модель:
Входные параметры: х1,у1,х2,у2 - значения костей домино.
Выходные параметры: ответ: можно приставить кости одну к другой или нет. Связь: если xl=x2 или xl=y2 или yl=x2 или yl=y2, то ответ: можно, иначе - ответ: нельзя. Связь можно представить в виде блок-схемы.
Компьютерная модель:
Для получения значений "костей" домино используются формулы:
=ОКРУГЛ(СЛЧИС()*6;0)
Для определения результата используется формула:
=ЕСЛИ(ИЛИ(В2=ВЗ;В2=ОЗ;О2=ВЗ;О2=ОЗ);"можно";"нельзя")
§ 3.4 Задания для самостоятельной работы
1. Моделирование в среде графического редактора
Задания для самостоятельной работы
1. Построить прямоугольный треугольник по гипотенузе и катету. Построение произвести по нижеприведенному или собственному алгоритму.
- Угол, вписанный в окружность и опирающийся на диаметр, равен 90. приведенный на рисунке алгоритм основан на построении двух окружностей: с диаметром, равным заданной гипотенузе, и с радиусом, равным заданному катету.
2. Построить равнобедренный треугольник по боковой стороне и углу при вершине. Построение произвести по собственному алгоритму.
3. Построить треугольник по трем сторонам.
4. Построить восьмиугольник с заданной стороной.
5. Построить параллелограмм по заданным сторонам и острому углу.
6. Построение 3 проекций по общему виду объекта.
7. Создать с помощью компьютера план известного вам исторического сражения.
8. Создать собственную галерею мод, используя в качестве модели нарисованную фигурку человека.
9. Создать экранный набор плоских или объемных деталей для моделирования православных храмов и церквей, строящихся по определенным канонам. При создании меню желательно использовать знания, полученные на уроках истории или дополнительную литературу.
10. Разработать эскизы базовых элементов и на их основе создать узор для деревянной поделки – шкатулки, доски или рамки.
2. Моделирование в среде текстового редактора
Задания для самостоятельной работы
1. Наградной диплом. При проведении различных конкурсов одной из форм поощрения участников являются наградные дипломы. Они должны быть заверены подписью официальных лиц (председателя и членов жюри). Иногда диплом может подтверждать шуточные достижения. Создайте и оформите эскиз диплома.
2. Объявление. Это документ который содержит некоторую информацию. По своему содержанию объявления могут быть разные:
- Объявление о предстоящем концерте, встрече, собрании содержит информацию о дате, времени, месте и теме события;
- Объявление о пропаже содержит характеристики объекта, контактный телефон;
- Объявление об услугах, пропаже, обмене содержит характеристику объекта в наиболее привлекательном виде.
Составьте эскиз объявления на выбранную тему.
3. Составить фрагмент расписания, состоящего из четырех уроков и удовлетворяющих следующим требованиям:
- Математика должна быть первым или вторым уроком пока ученики еще не устали;
- Физкультура может быть только последней, чтобы разгоряченные школьники сразу шли домой;
- Историю можно ставить первым, вторым или третьим уроком;
- Учитель литературы может дать второй или третий урок.
4. Составить алгоритмическую модель нахождения наибольшего общего делителя двух чисел.
5. Составить алгоритмическую модель умножения двух чисел А и В с определением знака произведения.
6. Составить алгоритмическую модель определения возможности построения треугольника по трем заданным сторонам А, В, С. Оформить комплексный отчет, включающий элементы оформления, текст задания, алгоритмическую модель в виде блок-схем.
7. Чтобы предупредить развитие болезней, помидоры и огурцы опрыскивают бордоской жидкостью – смесью растворов медного купороса и извести. Главное условие при использовании такой жидкости – раствор не должен быть кислотным. Проверяется раствор лакмусовой бумажкой. Есть три варианта реакции: бумажка покраснела (кислотная реакция), посинела (щелочная), или не изменила цвет (нейтральная). Составить алгоритмическую схему принятия решения об опрыскивании растений бордоской жидкостью.
8. Составить алгоритмическую схему правила «Частица НЕс прилагательными».
Частица НЕс прилагательными | |
СЛИТНО | РАЗДЕЛЬНО |
Если без НЕ не употребляется | Если имеется (или подразумевается) противопоставление |
Если образует новое слово (которое часто можно заменить близким по смыслу без НЕ) | Если отрицание усиливается отрицательными местоимениями или отрицательными наречиями, а также если входит в состав частиц далеко не, вовсе не, отнюдь не |
Если употребляется со словами совсем, совершенно, весьма, чрезвычайно и др., усиливающими степень качества | Если употребляется с краткими прилагательными, которые не имеют полной формы, или у которых она имеет иное значение |
3. Моделирование в электронных таблицах
Задания для самостоятельной работы
1. Определение максимальной площади треугольника. В прямоугольном треугольнике задана длина гипотенузы с. Найти размеры катетов, при которых треугольник имеет наибольшую площадь. Составить геометрическую и математическую модель. Провести расчеты.
2. Определение минимальной длины изгороди садового участка. Садовый участок прямоугольной формы имеет площадь S. При каких размерах длины и ширины участка длина изгороди будет наименьшей? Составьте геометрическую и математическую модель. Провести расчеты.
3. Продукты для похода. Для организации похода надо построить модель расчета нормы продуктов для группы туристов. Известна норма каждого продукта на 1 человека на день, количество человек и количество дней похода.
Продукты для похода | |
Количество человек | 15 |
Количество дней | 6 |
Название | 1 человек/день |
Вермишель г. | 55 |
Рис, г. | 20 |
Пшено, г. | 20 |
Гречка, г. | 20 |
Картофель, г. | 200 |
Колбаса, г. | 40 |
Сыр, г. | 50 |
Масло, г. | 35 |
Суп, пакет | 0,33 |
Хлеб, шт. | 0, 33 |
Булка, шт. | 0,33 |
Чай, г. | 5 |
Кофе, г. | 5 |
Сахар, г. | 30 |
Сушки, г. | 50 |
Конфеты | 20 |
4. Буратино и папа Карло. У папы Карло было накоплено 20 золотых, когда Буратино поступил на работу в кукольный театр Карабаса Барабаса. Ежедневно Буратино приносил зарплату 5 золотых, а папа Карло тратит половину (50%) имеющегося на начало недели богатства. Постройте модель изменения капитала в течении нескольких недель. Исследуйте модель и ответьте на вопросы:
- Как изменяется капитал, если увеличить (уменьшить) начальный капитал папы Карло?
- Как изменяется капитал, если увеличить (уменьшить) зарплату Буратино?
- Как изменяется капитал, если увеличить (уменьшить) процент еженедельной траты капитала?
5. Аквариум. Мальчик решил почистить аквариум. Начал с переселения рыб в банку. Семейство рыб, проживающих в аквариуме, составляло 40 штук. Первую рыбку он поймал быстро, затратив 5 с., и еще 2с. потратил на перекладывание в банку. Но чем меньше становилось в воде рыбок, тем труднее было их поймать. На каждую следующую рыбку он затрачивал времени больше на 5% , чем на предыдущую. Сколько минут времени он затратит на переселение рыбок?
6. Награда. Шахматы были изобретены в Индии. Индусский царь Шерам решил наградить изобретателя шахмат, вызвал его к себе и сказал, что исполнит любую его просьбу. Изобретатель удивил царя беспримерной скромностью просьбы: - Прикажи выдать мне за первую клетку шахматной доски 1 пшеничное зерно, за вторую – 2, за каждую следующую в два раза больше, чем за предыдущую. Сколько килограммов зерна было выдано изобретателю, если 1 зерно весит 0,05г.?
7. Обработка массива оценок. Исследуйте массив оценок в классном журнале за ограниченный промежуток времени [11]. Проделайте два эксперимента:
- с массивом, содержащим оценки одного ученика по разным предметам;
- с массивом оценок всего класса по одному предмету.
Виды обработки придумайте самостоятельно.
8. Совместимость людей по биоритмам. Когда у двух людей совпадают или очень близки графики по одному, двум или даже всем трем биоритмам, то можно предложить довольно высокую совместимость этих людей. Построить модель физической, эмоциональной и интеллектуальной совместимости двух друзей.
9. Спасение утопающего. С какой скоростью и под каким углом надо бросить с борта спасательного судна круг утопающему? При расчетах учесть следующие условия:
1. начальная скорость может изменяться в пределах до 10 м/сек;
2. расстояние утопающего от корабля;
3. точность попадания равна 0,5м;
4. угол бросания может быть отрицательным;
5. высоту борта корабля над уровнем моря.
10. Кроличья семья. Самка кролика каждые два месяца приносит в среднем 10 крольчат. Провести расчет пополнения кроличьей семьи молодняком в течении года.