При работе с одаренными детьми целесообразно учитывать принципы индивидуализации, дифференциации, исследовательского обучения, а также особенности мышления левополушарных и правополушарных учащихся.
§ 4. Проблемы развития одаренных детей в процессе обучения математике
В предыдущем параграфе рассмотрены различные условия и методы работы с одаренными детьми. Существует множество авторских программ по выявлению и развитию детей с высокими способностями, способов и подходов к данной задаче. Но, в настоящее время, невозможно рассматривать одно из направлений в работе с одаренными и способными детьми как основное, поскольку, во-первых, пока нет достоверных способов отбора одаренных детей, и, во-вторых, развитие разных детей происходит неодинаковыми путями и в разном темпе.
Говоря об обучении одаренных детей, мы ориентируемся на развивающее обучение.
Идеи развивающего обучения представлены в трудах ведущих педагогов и психологов нашей страны (Л.С. Выготский, А.Н. Леонтьев, В.В. Давыдов, Л.В. Занков и др.) Основным принципом развивающего обучения является деятельностный метод, направленный на формирование у учащегося готовности к саморазвитию. Основные идеи, заложенные в принцип деятельности были сформулированы А. Н. Леонтьевым и П. Я. Гальпериным, а затем обобщены Г. В. Дорофеевым и Л. Г. Петерсон:
- процесс познания должен быть организован как самостоятельная деятельность учащихся;
- учитель – организатор процесса познания;
- деятельность познающего должна иметь критериальное обеспечение в виде программы или метода, в соответствии с которым она строится;
- формирование способностей в процессе познания происходит в ходе общения, коммутативного взаимодействия [32].
Перечисленные выше идеи впервые получили теоретическое обоснование в трудах Д. Б. Эльконина, В. В. Давыдова и Л. В. Занкова, которые выделяют следующие принципы концепции развивающего обучения: обучение на высоком уровне трудности, высокий темп изучения материала, способ восхождения мысли ученика от абстрактного к конкретному [58].
Понятие «развивающего обучения» обобщено Г. К. Селевко [51, с.180]: 1) под развивающим обучением понимается новый, активно-деятельностный способ (тип) обучения, идущий на смену объяснительно-иллюстративному способу (типу); 2) развивающее обучение учитывает и использует закономерности развития, приспосабливается к уровню и особенностям индивидуума; 3) в развивающем обучении педагогические воздействия опережают, стимулируют, направляют и ускоряют развитие наследственных данных личности; 4) в развивающем обучении ребенок является полноценным субъектом деятельности; 5) развивающее обучение направлено на развитие всей целостной совокупности качеств личности: РО = ЗУН + СУД + СУМ + СЭН + СДП, где ЗУН - знания, умения, навыки; СУД - способы умственных действий; СУМ - самоуправляющие механизмы личности; СЭН - эмоционально-нравственная сфера; СДП - деятельностно-практическая сфера; 6) развивающее обучение происходит в зоне ближайшего развития ребенка; 7) содержание развивающего обучения дидактически построено в логике теоретического мышления (ведущая роль теоретических содержательных обобщений, дедукция, содержательная рефлексия и т.д.); 8) развивающее обучение осуществляется как целенаправленная учебная деятельность, в которой ребенок сознательно ставит цели и задачи самоизменения и творчески их достигает; 9) развивающее обучение осуществляется путемрешения учебных задач; 11) технология обучения, основанная на использовании мотивов самосовершенствования личности, представляет собой новый уровень развивающего обучения и может быть названа саморазвивающим обучением.
Открытым вопросом является проектирование целей развивающего обучения математике как основного способа развития способных учащихся. Рассмотрим несколько методических исследований, направленных на проектирование целей развивающего обучения математике.
Х. Ж. Ганеевым выделяет 4 группы целей в системе развивающего обучения математике: а) общие цели развития личности (максимальное развитие интеллектуальных возможностей личности, достижение высокого уровня компетентности, достижение открытого типа познавательного отношения к окружающей действительности, осведомленность о своих познавательных возможностях, осознание общей структуры учебной деятельности, овладение методологией учебно-познавательной и творческой деятельности, приобретение опыта эмоционально-ценностного отношения к познанию); б)общие цели развития личности, в наилучшей степени достигаемые средствами обучения математике (достижение единства эмпирического и теоретического уровней познания, формирование визуального мышления, формирование культуры доказательных рассуждений, овладение специальными умственными операциями, осознание роли теоретических знаний); в) специальные предметные цели развития личности, достигаемые в процессе изучения математики (развитие математических способностей, раскрытие математических знаний в жизни, формирование представлений о математизации знаний, грамотное владение математическим языком, осознание структуры деятельности при изучении понятий, доказательстве теорем и решении задач, овладение навыками исследовательской деятельности при изучении математики и формирование опыта теоретической деятельности в предметной области; г) овладение программным материалом [12, с.20].
В классификации целей обучения математике В. А. Гусева на основе идей целостного формирования личности и дифференцированного подхода к обучению отражена направленность на целостное развитие личности и выделены три блока целей обучения математике: 1) получение всеми учащимися основ математических знаний, умений и навыков; этот блок определяется учебными программами; 2) формирование основных стержневых качеств личности, для которых обучение математике играет существенную роль; здесь основным являются качества личности: а) составляющие умственное воспитание (дедуктивное мышление, дисциплина и критичность мышления), б) составляющие ее творческий характер (творческие способности), в) связанные с формированием мировоззрения (понимание закономерности мира и принципов познания, интерес к приобретению научного взгляда на развитие мира, понятийное мышление), г) связанные с нравственным воспитанием (становление нравственных черт личности), д) связанные с эстетическим воспитанием (чувства прекрасного, воображение), е) связанные с трудовым воспитанием; 3) специальные цели собственно математического образования (математическая речь, использование математических инструментов, построение математических моделей, пространственные представления, математическая интуиция) [20].
Однако следует отметить, что цели развития учащихся в процессе обучения математике в общеобразовательной школе не дифференцированы по уровням и, в частности, не выделены цели развития одаренных учащихся. Такая попытка предпринята в исследовании О. Б. Епишевой [21].
В таблице 1 (Приложение 1) показано проектирование дифференцированных учебных целей. При этом, по мнению О. Б. Епишевой, достижение определенного уровня учебных целей зависит от уровня развития учащихся; в частности, третьего уровня усвоения достигают как раз те учащиеся, которые проявляют способности к учебной математической деятельности. В этом исследовании представлены и дифференцированные развивающие цели обучения математике, основные категории которых представлены в первом столбце таблицы 2 (Приложение 1).
Второй столбец этой таблицы содержит примеры обобщенных типов этих целей 3-го уровня, что, соответствует как компонентам математических способностей математического мышления (3-й столбец таблицы 2). Четвертый столбец таблицы содержит типы математических задач, соответствующих категориям развивающих целей (таблица 2 будет использоваться нами во второй главе работы при составлении системы задач, направленной на развитие одаренных учащихся). В диссертационном исследовании О. Б. Епишевой разработаны следующие условия достижения развивающих целей обучения математике: 1) система обобщенных типов учебных задач, адекватная системе целей; 2) система основных обобщенных приемов учебной деятельности как средства решения учебных задач; 3) усвоение учащимися приемов учебной деятельности, построенные на основе закономерностей развития ученика в процессе обучения и закономерностей формирования обобщенных приемов учебной деятельности [20].
Рассмотрим основные проблемы, возникающие при развитии способных детей. В рамках нашего исследования было проведено анкетирование учителей средней общеобразовательной школы № 335 с целью выявления наличия работы по развитию одаренных учащихся в школе и проблем, вызванных такой работой. Большинство опрошенных учителей (76-80%) считают, что в их классах есть одаренные в определенной области дети. Этот вывод они делают, главным образом, на основе собственных наблюдений (59%) и результатов учебной деятельности (15%).
При этом все опрошенные (100%) считают, что с этими детьми необходима специальная работа по развитию их способностей (большинство -58% - считает, что в первую очередь общих). В школе в целом такая работа не проводится (67%), но многие учителя пытаются проводить ее сами (34%) и считают, что она дает повышение качественной успеваемости (24%) и уровня общего развития (49%).
В противном случае наблюдается даже понижение уровня общего развития (49%) и качественной успеваемости (5%). Проводимая учителями работа осуществляется, главным образом, вне урока, т. к. на уроке они не находят для нее времени.
Кроме того, учителя испытывают следующие трудности в этой работе: отсутствие психологической помощи (31%), отсутствие специальной методической литературы (32%) и специальных дидактических материалов (12%) для работы с одаренными детьми.