Смекни!
smekni.com

Особенности развития одарённых детей в процессе обучения математике в 5-6 классах (стр. 12 из 22)

В учебнике математики для 5-6 классов авторов Г. В. Дорофеева и Л. Г. Петерсон реализуется деятельностный подход в обучении математике. Одним из принципов такого подхода является принцип минимакса: содержание образования предлагается на творческом уровне (уровне «максимума»), а административный контроль его усвоения – на уровне стандарта («минимума»). Таким образом, принцип минимакса является саморегулирующимся механизмом разноуровнего обучения; в месте с тем он означает, что решение всех заданий из учебника всеми учениками не является обязательным, каждый получает шанс тренировать свои способности в соответствии со своим выбором. В содержание учебника включен такой материал, как: элементы математической логики, задачи на метод проб и ошибок, метод перебора, различные системы счисления (в качестве дополнительного параграфа в 6 классе), геометрический материал (геометрические фигуры на плоскости и в пространстве, симметрия фигур). Задачи, обозначенные буквой С, – это задачи на смекалку, предлагаются авторами в конце каждой темы. Учебник ориентирован на развитие мышления и творческих способностей школьников [16, 17, 18, 32]. Учитывая все вышесказанное, следует отметить, что данный комплект учебников целесообразно использовать для реализации развития одаренных детей в процессе обучения математики.

Главным отличием учебника математики для 5-6 классов С. М. Никольского и др. «Арифметика» является наличие в конце каждой из глав пунктов под названием «Исторические сведения» и «Занимательные задачи». Использование на уроках исторического материала позволяет повышать познавательный интерес учащихся, расширять их кругозор, повышать математическую культуру. Среди занимательных задач, предлагаемых авторами учебника, присутствует достаточно много задач олимпиадных, нестандартных, которые можно использовать при работе со способными учащимися. Кроме того, все задачи дифференцируются по трем уровням сложности: легкие, средней трудности и задачи «со звездочкой» (повышенного уровня сложности). Таким образом, учебник вполне удобно использовать при обучении способных детей в качестве дополнительного источника занимательных задач [3].

Учебник математики для 5-6 классов А. Г. Мордковича и И. И. Зубаревой только начинает внедряться в школы [23, 24]. Знакомство с новым материалом в учебнике осуществляется в большинстве случаев через систему заданий (такие задания отмечены буквой У), т. е. Изучения нового начинается с проблемной ситуации, что значительно облегчает подготовку учителя к уроку. Среди задач, есть задачи повышенной трудности, отмеченные знаком *, по замыслу авторов, однако, они предназначены не только для работы с сильными детьми, но и, при, правильной организации учебного процесса, для всех учащихся. Главное отличие учебника состоит в сдвиге некоторых тем, связанных с обыкновенными дробями из курса 6-го класса в курс 5-го класса, усилением геометрической линии, а также включением в курс 5-6 классов представлением о комбинаторике, теории вероятностей и статистики. Учебник рассчитан на учащихся с достаточно высоким уровнем подготовки, в частности на детей, обладающих математическими способностями.

Основными принципами учебного комплекта «Математика, 5-6 классы» («Учебник-собеседник» и рабочие тетради не только с тренировочными упражнениями, но и с математическими играми и занимательными задачами) коллектива авторов Л. Н. Шеврина и др. [39] является учет особенностей психологического развития учащихся, опора на жизненные ситуации, организация внутри учебника диалога с читателем, необычное, увлекательное изложения. Через всю книгу проходит линия уроков под названием «Учимся рассуждать при решении задач». Учебник построен в занимательной, игровой форме, представляет собой путешествие пытливого ученика Смекалкина по стране Математика. Но данный учебник скорее предназначен для работы с учащимися средних способностей, поскольку не оснащен достаточным количеством трудных, нестандартных задач, необходимых для развития одаренных учащихся.

Математическое развитие ученика в возрасте 10-12 лет происходит в рамках своеобразного треугольника: «число – фигура – слово», где две последние составляющие хорошо выражены в учебнике «Наглядная геометрия» для учащихся 5-6 классов И. Ф. Шарыгина и Л. Н. Ерганжиевой [59], в основе которого лежит авторская концепция геометрического образования и его значения в интеллектуальном, творческом развитии человека. Существенные отличия данного курса от традиционного: а) геометрический материал играет самостоятельную роль; б) фузионизм, т. е. объединение изучения плоских фигур и пространственных тел; в) установка на разнообразие и регулярное изменение видов учебной деятельности – наблюдение, конструирование, экспериментирование и т.д., в результате которой учащиеся самостоятельно добывают знания и развивают специальные качества и способности. Данный курс способствует развитию интуиции и пространственного воображения, располагает большими возможностями для эмоционального, эстетического и духовного развития человека. Развитие указанных качеств, безусловно, очень важно при формировании личности ребенка и его умственном развитии, но, несмотря на это, учебник не достаточно снабжен материалом, необходимым для развития одаренных учащихся.

Выводы

Итак, на настоящий момент, существует большое количество различных учебников математики для 5-6 классов. Хотя, в большинстве общеобразовательных школ страны используется учебник Н. Я. Виленкина, во многих школах начинается внедрение учебников других авторов, имеющих новый подход к содержанию образования. Появилось несколько учебников, которые удобно и целесообразно использовать при работе со способными учащимися. Но, анализируя вышерассмотренные учебники, можно обозначить тот факт, что не один из представленных учебников не содержит соответствующего набора задач (см. таблица 2), необходимых для развития математических способностей. Современные образовательные стандарты, программы и учебники по математике для 5-6 классов в той или иной степени раскрывают гуманитарный потенциал математики, показывают некоторые ее практические приложения, содержат определенный материал, направленный на развитие учащихся средствами математики. В то же время в них не выделены элементы учебного материала и задач, цель которых – развитие именно одаренных детей средствами математики.

Выводы по первой главе

1. Одаренным является ребенок, обладающий такими чертами, как: познавательная потребность, развитость творческого мышления и воображения (креативность), высокий уровень интеллекта. Главными признаками математических способностей являются: способность к обобщению; логичность и формализованность мышления; гибкость и глубина, систематичность, рациональность и аргументированность рассуждений; «сильная» память. Понятия «одаренность» и «способности» тесно связаны между собой и часто определяются одно через другое, поэтому можно считать их синонимичными.

2. При выявлении одаренных детей более целесообразно использовать комплексный подход, включающий множество оценочных определителей одаренности (тесты, наблюдения, эксперимент, опрос и др.), в отличие от подхода, основанного на системе единой оценки, включающей лишь исследование уровня интеллекта ребенка. Кроме того, выявление и диагностика одаренности – сложная задача, требующая привлечения квалифицированных специалистов разных областях.

3. Существует несколько подходовк выявлению-развитию детской одаренности. Стержневым моментом, объединяющим все теоретические позиции, является подход к одаренности как к процессу целостного развития личности и сознания одаренных детей, реализующего творческий потенциал их развития. Для создания условий развития такого потенциала есть два способа: обогащение и ускорениетрадиционного образовательного процесса. При работе с одаренными детьми целесообразно учитывать принципы индивидуализации, дифференциации и исследовательского обучения. Основные психолого-педагогические методы развития одаренных детей, входящие в обогащение и ускорение образовательного процесса должны включать решение специальных математических и учебных задач, формирование ориентировочной основы умственных действий при решении задач, эвристические, игровые, проблемные и активныеметоды обучения.

4. Основными проблемами при работе педагога с одаренными детьми является отсутствие психологической помощи, отсутствие специальной методической литературы и специальных дидактических материалов. Говоря об обучении одаренных детей, мы подразумеваем развивающее обучение, но отмечаем, что в настоящее время не существует целостной системы, которая составляла бы часть методической системы и, в частности, системы развития одаренных способностей учащихся в процессе обучения математике в общеобразовательной школе.

5. На современном этапе существует множество учебников, которые удобно и целесообразно использовать при работе со способными учащимися. Но, анализируя вышерассмотренные учебники, можно обозначить тот факт, что не один из представленных учебников не содержит соответствующего набора задач (см. таблица 2), необходимых для развития математических способностей.

6. Специализированные школы и классы, конкурсы и олимпиады по математике получили большое распространение в нашей стране, но, как показывают исследования, они не решают всех проблем развития одаренных детей. Решение проблем таких детей - задача общеобразовательной школы.