Покажем пример использования учеником этого приема при поиске решения задачи на с.56 § 2 главы II. «На складе хранились яблоки в ящиках по 6 кг, 8 кг и 10 кг. Кладовщик должен отпустить для школы 100 кг яблок целыми ящиками, не вскрывая ни одного из них. По сколько ящиков каждого веса он должен брать, чтобы получилось ровно 100 кг (рассмотри 10 способов решения этой задачи и запиши их)» (Примечание: нумерация графы деятельность учащихся соответствует нумерации обобщенного приема поиска решения задач).
Прием деятельности Деятельность ученика
1) Изучите содержание задачи, используя рисунок, чертеж, схему, краткую запись или другую наглядную иллюстрацию содержания.
Изучает содержание задачи рассматривает рисунок, перефразирует содержание задачи примерно следующим образом: какие множители нужно брать к числам 6, 8, 10, чтобы сумма этих произведений равнялась 100. Обозначает неизвестные множители: x, p, n. Представляет задачу в виде модели: 6 • x + 8 • p + 10 • n = 100
3) Соберите дополнительную информацию из опыта решения других типов задач, преобразуйте информацию с учетом специфики данной задачи.
Припоминает, что данная задача похожа на задачу нахождения неизвестных. Делает вывод, что не знает способов решения данной задачи, но может использовать метод перебора.13) Выделите, если можно, частные случаи задачи и воспользуйтесь отмеченным выше приемом разделения на части.
Пробует метод перебора, в частности, (1 вариант), если использовать один ящик по 6кг, то 6 • 1 + 8 • p + 10 • n = 100, значит 8 • p + 10 • n = 94. При умножении любого натурального числа на 10 результат есть «круглое» число, следовательно, необходимо подобрать такое количество ящиков по 8 кг, чтобы в сумме с одним ящиком в 6 кг также получилось «круглое» число. Перебирая «в уме» и «на кубиках» (в зависимости право-, левополушарности) определяет, что ящиков по 8 кг должно быть 3. На данном этапе модель выглядит следующим образом:
6•1+8•3+10•n = 100, из чего следует незамедлительно вывод, что ящиков по 10 кг должно быть 7 т.к. 6 • 1 + 8 • 3 + 10 • 7=100.
14) Поставьте перед собой такие вопросы, которые позволят использовать полученные знания и побуждают к самоконтролю;
Ставит перед собой вопрос о возможности использовать данный прием и найти новый способ решения. Аналогично ищет другие пути перебора ящиков (можно использовать соревнование, кто больше найдет способов решения этой задачи) по 6кг, 8 кг и 10 кг, чтобы в сумме получилось 100 кг: 2) 6 • 2 + 8 • 1 + 10 • 8 = 100, 3) 6 • 3 + 8 • 4 + 10 • 6 = 100, 4) 6• 4 + 8•2+10 •6= 100, 5) 6 • 5 + 8 • 5 + 10 • 3 = 100, 6) 6• 6 + 8• 3 +10 • 4= 100, 7) 6• 7 + 8• 1 +10 • 5 = 100, 8) 6• 8 + 8• 4+10 • 2 = 100, 9) 6 • 4 + 8 • 7 + 10 • 2 = 100 , 10) 6 • 1 + 8 • 8 + 10 • 3 = 100.
Мы планируем работу на уроке по развитию способностей учащихся в группах, обозначенных нами А, В, С и А1, А2, А3, которые будут менять свой состав в зависимости от целей, поставленных учителем. Если идет работа на уровне «вдохновления» учащихся (имеющих высокий уровень способностей), самостоятельный поиск знаний, когда учитель вооружая учащихся некоторыми приемами, «техниками», алгоритмами, освобождаясь от доминирующей информирующей роли, то используется уровневая дифференциация для работы со всем классом. Здесь каждый учащийся получает творческое задание по своему уровню развития, в своей уровневой группе. Обозначение групп: А - I уровень, В - II уровень, С - III уровень. Учащиеся, имеющие более высокий III уровень, получают задание более сложное - это группа С.
Если организуется «выращивание» способностей каждого конкретного ребенка, то здесь мы предлагаем работу перестраивать в другие группы, где в состав каждой из них будут входить дети разного уровня развития. Конечная цель работы ученика в такой разноуровневой группе и будет выращивание отдельных компонентов способностей до определенного уровня (до которого ученик в данный момент не дотягивает). Здесь большую роль играет как элемент соревнования, так и зависимость итогового результата от каждой личности в отдельности. И неважно, что первое время ребята, которые не справляются со своей частью задания, будут отвлекать других учащихся своей группы. Это только первоначально, т.к. время выполнения заданий фиксируется. Значит, отвлекая своих товарищей по творческой группе, он тем самым тратит общее время, от этого зависит итоговый результат всей разноуровневой группы. Это осознает в конце концов каждый ребенок и самодисциплинируясь, подталкивает себя сам и с помощью ребят, на полную самореализацию, что в конечном итоге скажется на развитии этой составляющей способностей (группы: А1, А2, А3). Отличие собственно предлагаемой методики работы с одаренными детьми от традиционного дифференцированного подхода состоит в том, что мы используем способ обогащениякак метод поддержки обучения одаренных детей на обычном, повседневном уроке.
В нашей стране способ обогащения чаще всего принимает форму дополнительных занятий в разнообразных кружках (по математике и др.), секциях, школах специальных дисциплин (музыки, рисования и т.д.). В этих кружках обычно есть возможность индивидуального подхода к ребенку и работы на достаточно сложном уровне, не позволяющем скучать. Таким образом, создается достаточная мотивация и хорошие условия для прогресса одаренного ребенка. Проблема здесь заключается в том, что ребенок, посещающий кружок, продолжает заниматься по общеобразовательным предметам по той схеме, которая не соответствует особенностям его интеллекта. Предлагаемая же методика, учитывающая особенности учебной деятельности лево/правополушарных учащихся, позволяет ребенку уже на обычном повседневном уроке иметь возможность не только обогащения средствами изучаемого материала, но и ускорение в изучении по его способностям.
Таким образом, развивая классный коллектив учащихся, как по вертикали (ускорение), так и по горизонтали (обогащение), можно, добиться развития способностей каждой личности в отдельности. Ниже приводятся примеры уроков и занятий математического кружка, включающих цели развития общих и математических способностей учащихся на различных этапах учебного процесса.
План урока представлен в обычной традиционной форме.
Урок №1 5 класс
Тема урока: Сложение и вычитание натуральных чисел
Тип урока: Урок закрепления изученного
Цели урока:
Обучающие: достижение стандартов образования;
I уровень: ученикзнает и понимаетпереместительное и сочетательное свойства сложения, свойство нуля, разложение числа по разрядам; свойства вычитания суммы из числа и числа из суммы (с помощью извне); умеет применять свойства сложения натуральных чисел при решении простейших задач, свойства суммы при известных слагаемых или при одном неизвестном слагаемом; применять свойства вычитания при решении простейших задач на нахождение неизвестного уменьшаемого, вычитаемого или разности при двух известных составляющих.
II уровень: учениквыполняет действия 1-го уровня; решает стандартные задачи на нахождение двух чисел по их сумме и разности, приводит примеры и контрпримеры на сложение и вычитание натуральных чисел и их свойства; выполняет сложение и вычитание натуральных чисел с помощью частных приемов.
Ш уровень (уровень одаренных детей): ученик знает, понимает и умеет выполнять действия I и II уровней; решает нестандартные, развивающие задачи, предполагающие знания данной темы; самостоятельно составляет задачи на сложение и вычитание натуральных чисел; находит ошибки в решении задач, исправляет их; может выделить для себя из процесса решения задач полезные знания; выполняет сложение и вычитание с помощью обобщенных приемов.
Развивающие: развитие элементов логического мышления, творческой деятельности, речи, мировоззрения.
I уровень: ученикможет сосредоточиться на данных задачах, внимательно слушает, наблюдает (внимание), вспоминает и воспроизводит правила сложения и вычитания (память); выполняет действия сложения и вычитания по образцу; применяет правила сложения и вычитания в частных случаях; находит задания в учебнике и решает задания на сложение и вычитание с помощью учителя или памяток, ориентируется на внешний контроль, оценку и коррекцию (умение учиться).
II уровень: учениквыполняет действия 1-го уровня; может сосредоточиться сознательно, в течение урока, без усилий выполнять задания на сложение и вычитание натуральных чисел; реагирует на проверку задания (восприятие); использует точное, словесно-логическое произвольное запоминание натурального ряда чисел, воссоздает из памяти необходимые знания волевым усилием (память); использует анализ для решения задач и коррекции (анализ); составляет план решения задачи на сложение и вычитание натуральных чисел - план ответа, доклада (синтез); строит рассказ и делает записи в тетради по самостоятельно составленному плану или схеме, свободно задает и отвечает на вопросы данной темы (речь).
Ш уровень (уровень одаренных детей): ученик выполняет действия II-го уровня; может сосредоточиться на учебной деятельности, быстро и без ошибок, в любых условиях выполняя любое количество заданий на сложение и вычитание (внимание); выбирает наиболее рациональные приемы сложения и вычитания; использует обобщенно-смысловое запоминание приемов действий (память); видит скрытые ошибки и упущения (анализ); использует накопленный запас знаний для решения нестандартных задач на сложение и вычитание (синтез); развивает полушария головного мозга через письмо левой рукой (см. стр. 33).
План урока