Тема: Сложение обыкновенных дробей с разными знаменателями
Тип урока: Урок изучения нового материала
Цели урока (для III уровня (уровень одаренных детей):
Обучающие: ученикзнает и понимает основное свойство дроби, правила сокращения дроби, приведения дробей к общему знаменателю, сложения обыкновенных дробей с разными знаменателями; решает нестандартные задачи на сложение обыкновенных дробей с разными знаменателями; выполняет действия сложения обыкновенных дробей с помощью обобщенных приемов; умеет изображать сложение обыкновенных дробей на координатном луче; использует накопленный запас знаний для решения текстовых задач на сложение дробей с разными знаменателями.
Развивающие (уровень одаренных детей):учениквыполняет действия I-го и II-го уровня; может сосредоточиться, быстро и без ошибок, в любых условиях выполняя любое количество заданий на сложение обыкновенных дробей с разными знаменателями (внимание); выбирает наиболее рациональные приемы сложения обыкновенных дробей с разными знаменателями; использует обобщенно-смысловое запоминание правил действий с дробями (память).
Воспитывающие: воспитание взаимоуважения, терпеливости, взаимопомощи, трудолюбия.
План урока
Iэтап – подготовительный: мотивация и постановка целей урока с помощью проблемной ситуации; повторение и актуализация опорных знаний.
IIэтап – основной: изучение нового материала, его первичное осмысление и закрепление материала (отдельно для одаренных детей).
III этап – постановка домашнего задания (отдельно для одаренных детей).
IV этап – подведение итогов урока.
Подготовка к уроку
1) Подбор литературы и заданий для учащихся;
2) Подготовка групп: А, В, С – соответственно одноуровневые группы; разноуровневые группы А1, А2, А3 каждая в своем составе имеют учащихся I, II и III уровней, т.е. одаренные дети входят в каждую из этих групп.
3) Оборудование урока: кодопозитив, карточки.
Кодопозитив
(Тип задачи: логическое мышление и речь; для одаренных детей) Чтобы сложить дроби с разными знаменателями, нужно привести эти дроби к ... знаменателю, а затем выполнить действие
Карточка № 4.
(Тип задачи: взаимопроникающие элементы, для одаренных детей)
Представьте наименьшее положительное целое число только двумя цифрами
Карточка № 7.
(Тип задания: выделение существенного, для одаренных детей)
Определите, не считая, больше или меньше 1 данное
выражение:
а)
+ б) + в) + г) +Карточка № 8.
(Тип задачи: творческая, для одаренных детей)
Используя все цифры от 1 от 9, напишите две
обыкновенные дроби, которые в сумме давали бы
единицу (при этом каждая цифра употреблялась
бы один раз)
Примечание: карточки № 1-3 и 5, 6 подготовлены для учащихся I и II уровня и здесь не приводятся.
Вид доски на начало урока
Левая сторона – тексты задач 1-3.
Задача 1 (тип задачи: стандартная задача на приведение дробей к общему знаменателю).
Приведите к общему знаменателю дроби: а)
и ; б) иЗадача 2 (такого же типа на сложение дробей с одинаковыми знаменателями).
Выполните сложение: а)
+ ; б) + .Задача 3 (Тип задачи: использование дедуктивного умозаключения).
Выполните сложение: а)
+ ; б) + .Основная часть доски.
Детали картины | баллы | вопросы | А1 | А2 | А3 |
1. 2. 3. 4.5. 6. 7. 8. | 1 1 1 2 1 1 2 3 | Представьте наименьшее положительное целое число только двумя цифрами. Определите, не считая, больше или меньше 1 данное выражение. Используя все цифры от 1 от 9, напишите две обыкновенные дроби, которые в сумме давали бы единицу |
В ходе урока учитель будет «наносить» элементы картины на «полотно» каждой группы в зависимости от правильности ответов по форме:
А1: | А2: | А3: |
Вид доски на конец урока
(Три заполненные в разной степени картины, количество деталей которых соответствует количеству правильных ответов):
Детали картины | баллы | вопросы | А1 | А2 | А3 |
1. 2. 3. 4. 5. 6.7. 8. | 1 1 1 2 1 1 2 3 | Представьте наименьшее положительное целое число только двумя цифрами. Определите, не считая, больше или меньше 1 данное выражение. Используя все цифры от 1 от 9, напишите две обыкновенные дроби, которые в сумме давали бы единицу | 1 1 1 2 1 1 2 3 | 1 1 1 0 1 1 2 0 | 1 1 1 0 1 1 0 0 |
Ход урока