Смекни!
smekni.com

Особенности развития одарённых детей в процессе обучения математике в 5-6 классах (стр. 21 из 22)

§ 4. Возможность реализации целей развития одарённых детей во внеклассной работе

Помимо возможности развития одаренных учащихся непосредственно на уроках математики, существует, также возможность реализации целей развития способных детей и во внеучебное время, во внеклассной работе. О внеклассной работе с одаренными учащимися было подробно рассказано в параграфе 3 первой главы дипломной работы. Основной формой внеклассной работы во время учебного года являются кружковые занятия. План занятий кружка составляется самим учителем, и, в зависимости от различных факторов, имеет свои особенности. Например, в сельских, провинциальных школах темы занятий, предлагаемые задачи могут иметь региональное содержание, перекликаться с обычаями и особенностями данной местности.

Прежде, чем начинать занятия, необходимо провести тестирование учащихся на математические способности и склонности (определение лево-, правополушарного способа мышления, уровень интеллекта, особенности внимания, памяти, восприятия и т.п. (Приложение 2)) Поскольку выбор методики проведения занятий и подбор задач напрямую зависит от вышеуказанных особенностей ребенка.

Одна из основных функций кружковых и факультативных занятий – это подготовка способных учащихся к участию в олимпиадах. Список задач, рекомендуемых для использования на подобных занятиях приводится нами в Приложении 3.

Приведем пример занятия математического кружка.

Тема: Способы рационального сложения и вычитания натуральных чисел

Развивающие цели: развитие элементов логического мышления, творческой деятельности, речи, мировоззрения, умения учиться: ученикумеет применять свойства сложения и вычитания натуральных чисел в практической деятельности и другой нестандартной ситуации (дедуктивные умозаключения; формулирует вопросы по теме (речь); осознает, что понятие натурального числа – это одна из математических моделей окружающего мира (мировоззрение); использует правила сложения и вычитания натуральных чисел для составления задач (творчество); использует в полной мере знания поданной теме для оценки и самооценки своих одноклассников (критичность мышления); разъясняет (устно и письменно) ход решения задач (мышление и речь); самостоятельно составляет алгоритм или прием решения задачи (умение учиться).

План занятия

Iэтап – подготовительный: мотивация и постановка целей занятия;

II этап – основной: изучение нового материала и закрепление приобретенных знаний, их первичное применение;

IIIэтап – подведение итога занятия.

Подготовка к уроку

Схема (Тип задачи: творческая) Вид доски в начале занятия

358 597 1. 364 + 592 = 364 + (592 + 8) – 8

+439 1289 2. a + b = (a + c) + (b – c)

746 +67382 3. 1351 – 994

93295895 4. (a + b) – (a – b) = 2b

25 23 5. (74 + 26) + (74 – 26) = 148

15 34 6. Задание на схеме

23 18

2475 13

15

165163

Вид доски в конце занятия

1. 364 + 592 = 364 + (592 + 8) – 8 = 364 + 600 – 8 = 956;

a + b = a + (b + c) – c.

2. 997 + 856 = (997 + 3) + (856 – 3) = 1000 +853 = 1853;

a + b = (a + c) + (b – c).

3. 1351 – 994 = (1351 + 6) – (994 + 6) = 1357 – 1000 = 357;

a – b = (a + c) – (b + c).

4. (57 + 23) – (57 – 23) = 46;

(a + b) – (a – b) = 2b.

5. (74 + 26) + (74 – 26) = 148;

(a + b) + (a – b) = 2a.

7. Решение на схеме.

Ход занятия

Этапы Деятельность учителя Деятельность учащихся

I

II

III

1) Решает «в уме» быстро несколько примеров на сложение и вычитание натуральных чисел

2) Побуждает к обобщенному приему поиска вычислений данного типа примеров.

3) Отвечает на некоторые вопросы учащихся.

4) Формулирует тему и развивающие цели занятия.

5) Предлагает проанализировать готовую запись на доске с решением примера, поясняя, что это способ быстрого вычисления (способ 1).

6)Просит попробовать сформулировать данный способ.

7)Предлагает трансформировать данный пример в абстрактный вид.

1) Предлагает решить пример,

используя правило записи в абстрактном виде:

a + b = (a + c) + (b – c) (способ 2)

1) Просит сформулировать

способ 2.

2) Формулирует правило 3: Если вычитаемое увеличить на несколько единиц и уменьшаемое увеличить на столько же единиц, то разность не изменится.

4) предлагает решить пример и трансформировать его в абстрактный вид, используя предложенный способ 3.

5)Предлагает самостоятельно ре- шить пример, используя следующий абстрактный вид:

(a + b) – (a – b) = 2bи сформулировать правило (способ 4).

6) Решает пример:

(74 + 26) + (74 – 26) = 148 и предлагает сформулировать правило и представить его в абстрактном виде.

7) Организует деятельность для нахождения способа 6: Сложение столбцами, советуя обратиться к схеме. Просит сформулировать способ 6.

1) Подводит итоги занятия.

2) Формулирует вопросы:

1. Что дает вам знание способов быстрого вычисления? Где в практической жизни Вам пригодятся знания?

2.Чему Вы научились на сегодняшнем занятии.

1) пытаются отгадать ход решения учителя;

2) задают некоторые вопросы;

3) предлагают учителю объяснить «хит- рость», которой он пользуется;

4) анализируют решениес помощью учителя:

364 + 592 = 364 + (592 + 8) – 8 =

= 364 + 600 – 8 = 956;

5) трансформируют пример в абстрактный вид, определяют непротиворечивость условия;

6) формулируют способ: Если одно из сла гаемых увеличить на несколько единиц, то из полученное суммы надо вычесть столько же единиц.

7) трансформируют данный пример в абстрактный вид a + b = a + (b + c) – c

1) Решают пример, используя правило записи в абстрактном виде:

a + b = (a + c) + (b – c)

Решение:997 + 856 = (997 + 3) + (856 – 3) =

= 1000 + 853 = 1853;

самостоятельно строят решение по данной схеме;преобразуют данную запись в правило;

2) формулируют способ 2:Если одно из слагаемых увеличить на несколько единиц, а второе уменьшить на столько же единиц, то сумма не изменится.

3) Изучают содержание задачи;

4) решают, используя правило 3.

Решение:1351 – 994 = (1351 + 6) – (994+6) = 1357 – 1000 = 357;

трансформируют его в абстрактный вид, используя предложенный способ 3.

a – b = (a + c) – (b + c).

5)Изучают абстрактный вид задания; транс- формируют пример в абстрактный вид, оп- ределяют непротиворечивость условия.

Решение: (57 + 23) – (57 – 23) = 46.

Если от суммы двух чисел отнять разность тех же чисел, то в результате получится удвоенное меньшее число.

6) Преобразуют данную запись в правило; формулируют способ 5: Если к сумме двух чисел прибавить их разность, то в результате получится удвоенное большее число, т.е.

(a + b) + (a – b) = 2a.

7) Формулируют способ 6: сумма цифр каж- дого разряда складывается отдельно; цифра десятков в сумме предыдущего разряда складывается с цифрой единиц последую- щей суммы.

Приводят примеры реальной действительности, описанных данным математическим понятием. Предполагаемые ответы: 1. самостоятельность, умение выходить из сложной ситуации и т.п. При расчете в магазине; на уроках, где необходимо быстро сосчитать, сравнивать, обобщить и т.п.

2. Умению быстро считать, используя способы 1-6; анализировать решенный пример и на его основе делать «открытие» способов быстрого вычисления самостоятельно.

одаренный учащийся математика обучение

Выводы по второй главе

Целью развития одаренных учащихся является не только овладение учащимися умениями и навыками, входящими в стандарт образования, но развитие в детях математических способностей, различных качества ума, вычислительной культуры, элементов творческой деятельности, научного мировоззрения. В данной главе разработана система задач, дифференцированная по категориям целей (направленных на развитие различных психических функций ребенка), которые целесообразно использовать при реализации целей развития одаренных детей в процессе обучения математике в 5-6 классов. Представлены конспекты уроков по конкретным темам, иллюстрирующие деятельность учителя и учащихся, направленную на развитие одаренных детей. Показана возможность реализации развития одаренных учащихся во внеклассной работе путем разработки конспектов занятий кружка по математике.

Заключение

В процессе написания дипломной работы были получены следующие результаты и выводы.

1. Выявлены психолого-педагогические основы развития одаренных учащихся в процессе обучения математике:

- Раскрыты сущности понятий «одаренность» и «способности». Показано, что понятия «одаренность», «способности» и «задатки» тесно связаны между собой и часто определяются одно через другое. В предлагаемых различными исследователями определениях данных понятий можно выделить ряд общих существенных признаков: как правило, это – высокий уровень умственного развития (интеллекта), определенные качества личности, которые обеспечивают достижения в той или иной деятельности. На основе этого сделан вывод, что одаренным является ребенок, обладающий большой познавательной потребностью, высоким уровнем интеллекта, творческим подходом (креативностью).