Смекни!
smekni.com

Измерения геометрических величин в курсе геометрии 7-9 классов (стр. 4 из 14)

К применению измерений в изучении геометрии вновь автор обращается лишь при изучении тем «Соотношение между сторонами и углами в прямоугольном треугольнике» и «Решение треугольников».

Таким образом, автор не делает акцент на практической направленности геометрии.

3.3 Учебник геометрии 7 – 9 (авторы Шарыгин И.Ф. и др.)

Шарыгин И.Ф. [31] уже в начале книги указывает на то, что любое геометрическое тело имеет три измерения: длина, ширина, высота.

При изучении понятия отрезка подразумевается, что о понятии длины отрезка, единицах длины школьники уже знают. Отмечены лишь некоторые свойства:

- длина отрезка выражается положительным числом;

- два отрезка являются равными, если они имеют равную длину и др.

Поясняется, каким образом мы можем построить равные отрезки. Также небольшое внимание уделяется и измерению углов. Автор напоминает, что с этой мерой углов ученики уже знакомы, поэтому это понятие больше не вводится.

Простейшим инструментом измерения градусной меры угла служит транспортир. Также подробно описывается, как именно использовать этот измерительный инструмент. Совместив вершину угла с точкой О на транспортире и направив одну из его сторон по прямолинейной границе транспортира, мы увидим значение величины угла в точке пересечения его второй стороны со шкалой, указанной на транспортире. При этом подчеркивается, что каждому углу соответствует его единственная градусная мера. Рассмотрим какой-нибудь угол. Пусть одна его сторона неподвижна, а другая вращается вокруг вершины. Будем считать, что в начальном положении стороны угла совпадают, что соответствует углу 0°, а в конечном положении стороны образуют развернутый угол, величина которого равна 180°. Тогда любой угол, величина которого равна заданному числу градусов, при этом вращении появится лишь однажды.

Затем уже только в восьмом классе вводятся теоремы об измерении вписанного угла, угла с вершиной внутри и вне круга, угла между касательной и хордой. Заметим, что эти измерения являются косвенными, и в теоремах выводятся формулы, с помощью которых можно отыскать градусную меру упомянутых углов.

При изучении геометрии в девятом классе вводится понятие площади следующим образом: площадь – это некоторая характеристика геометрической фигуры, расположенной на плоскости или иной поверхности. Также приводятся свойства площади, аналогичные свойствам длины отрезка и градусной меры углов.

Таким образом, в учебнике Геометрия 7-9, Шарыгина И.Ф. должного внимания непосредственным измерениям не уделяется, не делается акцента на возможности применения измерительных инструментов в геометрии.

3.4 Учебник геометрии 7 – 9 (авторы Смирнова И.М., Смирнов В.А.) [26]

В данном учебнике поясняется, что измерение длины отрезка основано на сравнении его с отрезком, длина которого принимается за единицу (единичный отрезок). Авторы вводят определение понятия длины отрезка следующим образом: длина отрезка – это положительное число, показывающее, сколько раз единичный отрезок и его части укладываются в данном отрезке. Подробно описывается процесс измерения отрезков: авторы говорят, что для измерения длины данного отрезка АВ последовательно откладывают единичный отрезок ОЕ на луче АВ от вершины А. Если при этом единичный отрезок целиком укладывается в отрезке АВ целое число раз без остатка, то процесс измерения на этом заканчивается и полученное число считается длиной отрезка АВ. Если единичный отрезок целиком укладывается в отрезке АВ с остатком, т.е. конец последнего единичного отрезка С не совпадает с концом отрезка АВ и остаток СВ меньше единичного отрезка, то полученное число n считается приближенным значением длины отрезка. В этом случае единичный отрезок разбивается на 10 равных частей. Уже откладывают одну десятую часть единичного отрезка и т.д. После этого рассматриваются свойства длины отрезка и приводятся некоторые исторические сведения о длине отрезка. Задачи на непосредственные измерения отрезков в учебнике не рассматриваются.

При изучении градусной меры угла поступают также, как и при изучении длин отрезков: вводится определение градусной меры угла и свойства. После приводятся краткие исторические сведения, где рассказывается об истории возникновения угломерного инструмента – астролябии. Помимо единицы измерения углов – градуса рассматриваются и такие: минуты и секунды.

В учебнике авторы вновь обращаются к измерениям только лишь при изучении темы «Углы, связанные с окружностью». Рассматривается такое понятие, как градусная мера дуги окружности. Также говорится о длине окружности, выводится формула для ее нахождения.

И в следующей главе учебника «Площадь» вводятся определение площади, как числа, получающегося в результате измерения и показывающего, сколько раз единичный квадрат и его части укладываются в данной фигуре. И приводятся свойства площадей, аналогичные свойствам длин отрезков. Выводятся формулы для нахождения площади квадрата, прямоугольника, параллелограмма, треугольника, трапеции, многоугольника, описанного около окружности, круга и его частей. В данном учебнике рассматривается изопериметрическая задача: какую наибольшую площадь ограничивают кривые заданной длины. В последней главе учебника авторы уделяют время на изучение площади поверхности и объема многогранника.

Определения, реализуемые в рассматриваемом учебнике, являются описательными. Приведено немало задач на косвенные измерения, не рассматриваются задачи на измерения на местности.

3.5 Учебники геометрии 7, 8 – 9 (авторы Александров А.Д. и др.) [1, 2]

Рассматриваемый учебник начинается с истории возникновения геометрии. Затем авторы вводят понятия отрезка, луча, прямой. При рассмотрении понятий длины отрезков, градусной меры углов и др. авторы поясняют, что длина отрезка – первая и самая важная из геометрических величин. Она характеризует его протяженность. Измерять длину постоянно приходится на практике. Длина используется при вычислении других геометрических величин – площадей, объемов, величин углов, показывая возможность косвенного измерения.

Геометрические величины характеризуют форму и размеры фигур. Измерение геометрических величин, по мнению авторов, - одна из важнейших задач геометрии.

Авторы обращаются к уже полученным знаниям учеников, и просто напоминают, что для измерения длины сначала надо выделить единичный отрезок. Также как и в других учебниках, перечисляются свойства длины.

После этого, рассматриваются два важных вопроса:

1. Как, имея измерительный инструмент, найти численное значение длины отрезка?

2. Как можно сделать инструмент для измерения длины?

Также в учебнике отмечается, что мера углов обладает теми же свойствами, что и длина отрезков. Измерение углов, как и отрезков, производится с помощью линейки, которая называется транспортиром. Авторы учебников подробно описывают такую линейку и рассказывают, как ей пользоваться.

Понятие площади многоугольника вводится уже в 8 классе, при этом дается определение площади. Также описывается процесс измерения этой геометрической величины.

И затем, только в конце 8 класса рассматриваются понятия длины окружности и площади круга.

Данный учебник предназначен для учащихся школ и классов с углубленным изучением математики, поэтому авторы уделили внимание как непосредственному измерению, так и косвенному измерению геометрических величин.

Мы рассмотрели пять учебников геометрии, рекомендованных (допущенных) Министерством Образования и Науки Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2008/2009 учебный год, и можем сделать следующие выводы: в учебниках Атанасяна С.Л. и др. и Александрова А.Д. и др. уделяется внимание непосредственному измерению площадей, различным измерительным инструментам и мерам длин, приводятся задачи как на непосредственное измерение, так и на косвенное измерение геометрических величин. Но в учебнике Александрова А.Д. практически не рассматриваются задачи, в которых отражалась бы значимость измерений в жизни. В отличие от этих учебников, у Погорелова А.В. и у Шарыгина И.Ф. и др. практически не уделяется время вопросам об измерительных инструментах и возможности применения их на практике. В учебнике Смирновых нет задач, показывающих практическую значимость измерений.

Также из проведенного анализа учебников, мы можем сделать вывод, что учащиеся знакомятся с такими методами геометрии как метод подобия, метод площадей, и используют другие методы: метод дополнительных построений, метод вспомогательного треугольника, координатный метод, метод геометрических мест [16].

Далее мы рассмотрим, с какими измерительными инструментами следует знакомить школьников, и как эти инструменты могут помочь в изучении геометрии.


§4. Измерительные инструменты в школе

Измерения являются не только неотъемлемой частью процесса обучения математике в школе, но и играют определенную роль в выборе будущей профессии. Уже сейчас возникает острая нехватка профессиональных инженеров, технических специалистов и руководителей среднего звена на производстве. В современном мире область применения измерений геометрических величин чрезвычайно широка.

Измерения являются одной из самых древнейших операций в процессе познания человеком окружающего материального мира. Вся история цивилизации представляет собой непрерывный процесс становления и развития измерений, совершенствования средств, методов измерений, повышения их точности и единообразия мер.

В процессе своего развития человечество прошло путь от измерений на основе органов чувств и частей человеческого тела до научных основ измерений и использования для этих целей сложнейших физических процессов и технических устройств. В настоящее время измерениями охватываются все физические свойства материи практически независимо от диапазона изменения этих свойств.