Смекни!
smekni.com

Использование компьютерных технологий в изучении наглядной геометрии (стр. 5 из 25)

4) Критерий соответствия задачам и целям обучения в классе данного профиля.

Изучение геометрических преобразований способствует развитию познавательного интереса учащихся, формированию их творческой активности, а также усилению прикладной направленности выбранного профиля обучения. Метод геометрических преобразований дает возможность учащимся применять графические (конструктивные) способы решения задач, требующие развитого пространственного воображения.

5) Мировоззренческий критерий.

Изучение геометрических преобразований способствует развитию мировоззрения учащихся и дает возможность:

- повысить уровень математической культуры школьников;

- пополнить свои знания самостоятельно;

- проявить свои склонности и интересы.

Таким образом, изучение темы «Геометрические преобразования»:

- необходимо для изучения последующего курса математики и это должно учитываться при определении логического курса математики и отборе содержания;

- обеспечивает изучение других предметов. Данную особенность необходимо учесть при отборе содержания и построении логической структуры курса;

- способствует достижению одной из главных целей курса математики развитие мышления школьников;

- обеспечивает учащихся некоторыми умениями и методами, необходимыми им в повседневной жизни.

Руководствуясь выделенными критериями отбора содержания материала, рассмотрим общие умения, которыми должны овладеть учащиеся 8-9 классов при изучении геометрических преобразований:

1. Строить образы фигур при осевой и центральной симметрии, параллельном переносе, повороте и гомотетии.

2. Задавать ось симметрии, центр поворота, определять угол поворота, направление параллельного переноса, его расстояние.

3. Видеть ситуации, в которых могут быть использованы определенные виды преобразований.

4. Переводить условия задачи на язык геометрических преобразований, а затем применять свойства конкретного преобразования к решению данной задачи, и тем самым решать задачи по геометрии и другим смежным дисциплинам методом геометрических преобразований.

Данные умения конкретизируются для каждой группы учащихся класса.

Изучение темы «Движение» целесообразно проводить в два этапа. На первом этапе в 8-9 классах рассматриваются геометрические преобразования на плоскости, а на втором этапе в 10-11 классах изучаются геометрические преобразования в пространстве. Данное распределение соответствует традиционному расположению материала по программе общеобразовательной школы. Тогда эффективность изучения темы будет зависеть от того, каким образом она будет реализована внутри каждого этапа. Для того, чтобы добиться значительного повышения эффективности изучения данной темы различными группами учащихся, необходимо учесть при ее построении их индивидуальные возможности, опираясь на основные дидактические принципы, на выделенные дидактические особенности темы.

Достижению этих целей будет способствовать использование возможностей профильной дифференциации предпрофильной подготовки при изучении темы «Движение».

Необходимо добавить, что содержание темы в 8-9 классах имеет значительную базовую часть, необходимую для изучения всеми учащимися, независимо от их интересов и стремлений. В то же время отметим, что, в основном, к этому возрасту математические способности учащихся уже проявились. Поэтому в данный период возникает острая необходимость учета индивидуальных особенностей учащихся, так как часть школьников по окончании 9 класса уже имеет твердые профессиональные намерения. Все перечисленные факты приводят к выводу о том, что в 8-9 классах целесообразно при построении курса «Геометрические преобразования плоскости» реализовать уровневую дифференциацию с элементами профильной, которые заключаются в отборе теоретического материала и в подборе системы задач для каждой группы учащихся класса в соответствии с их интересами и возможностями.

В 8-9 классах в содержании темы «Движение» выделяются три уровня обучения: базовый, повышенный и творческий.

Базовый уровень содержит основное ядро темы, которое должно быть изучено всеми учащимися класса. Причем нужно заметить, что данная часть должна содержать все три составляющие: гуманитарную, прикладную и естественнонаучную. На данном уровне целесообразно использовать фронтальные формы работы учебной деятельности учащихся.

Повышенный уровень характеризуется включением на этапе закрепления темы задач определенного практического характера, которые иллюстрируют приложения геометрических преобразований. На этом уровне уже нужно рекомендовать учитывать индивидуальные особенности учащихся, их интересы. В содержании этого уровня целесообразно выделить три составляющие и таким образом организовать работу на уроке, чтобы школьники, имеющие гуманитарные способности, больше работали с учебным материалом гуманитарного содержания и, наоборот, учащиеся с математическими способностями больше имели дело с материалами естественнонаучного содержания. Среди учащихся класса следует отобрать таких, которым больше подходит прикладная составляющая. При организации такой работы лучше использовать групповые и индивидуальные формы учебной деятельности. Таким образом, при обучении наблюдаются уже элементы профильной дифференциации.

Еще одно ее проявление возможно на третьем уровне обучения — творческом. Данный уровень может проявляться в двух видах: через факультативы и курс углубленного изучения математики. Факультативные занятия или курсы по выбору могут проводиться в двух направлениях:

1. В содержании факультатива преобладает естественнонаучная составляющая, т.е. рассматриваются вопросы, позволяющие углубить изучение теоретических вопросов данной темы. Занятия целесообразно рекомендовать тем школьникам, которые затем продолжат обучение в классах математического профиля.

2. В содержании факультатива преобладают вопросы прикладного характера, практические задачи. Данные занятия рекомендуется посещать учащимся, которые либо продолжат обучение в колледжах или будут обучаться в классах технического профиля.

Изучение темы «Движение» в классах с углубленным изучением математики предусмотрено государственной программой для этих классов. Оно может проводиться в два этапа, отвечающие возрастным возможностям и потребностям школьников и соответственно различающиеся по целям. Первый этап относится к основной школе, второй - к старшей школе.

Первый этап (8-9 классы) углубленного изучения математики является в значительной мере ориентационным. На этом этапе ученику следует помочь осознать степень своего интереса к предмету и оценить возможности овладения им с тем, чтобы по окончании основной школы он смог сделать сознательный выбор в пользу дальнейшего изучения математики – углубленного либо обычного.

В основу уровневой дифференциации с элементами профилирования закладывается принцип, согласно которому большую часть учебного времени три группы учащихся работают вместе. Так как работа идет в одном классе, то у учащихся есть возможность перейти из одной группы обучения в другую, если интересы приобрели другую профессиональную окраску. Данный подход способствует осознанному выбору профиля обучения в старших классах и наиболее эффективному обучению в нем.

§4. Анализ современных учебников, рабочих тетрадей и дидактических материалов по геометрии

Метод геометрических преобразований – метод обоснования некоторых отношений между объектами евклидовой геометрии, например, равенство, параллельность, подобие и др. Для доказательства теорем и решения задач (в частности, задач на построение) метод геометрических преобразований (как частный случай математического моделирования) выглядит следующим образом:

1) Выбрать геометрическое преобразование, которое позволит обосновать наличие указанного отношения между объектами евклидовой геометрии;

2) Выполнить выбранное преобразование так, чтобы один объект (или его часть) переходил в другой (новый, вспомогательный) объект, более удобный для исследования (или построения);

3) Исследовать полученный новый (вспомогательный) объект и его свойства;

4) Обосновать наличие указанного отношения между объектами с помощью свойств выбранного преобразования.

Частные случаи метода геометрических преобразований – методы осевой и центральной симметрии, поворота, параллельного переноса часто используют для обоснования равенства фигур, параллельности и перпендикулярности, отыскания кратчайшего расстояния.

У авторов школьных учебников по геометрии геометрические преобразования занимают разное место по объему и уровню строгости изложения.

В учебнике А.В. Погорелова «Геометрия 7-11» для общеобразовательных учреждений преобразованиям отведен один параграф «§9. Движение». Эта тема изучается в 8 классе. Основная цель изучения темы познакомить учащихся с примерами преобразований геометрических фигур. Поскольку в дальнейшем движения не применяются в качестве аппарата для решения задач и изложения теории, изучение материала рекомендуют дать в ознакомительном порядке, то есть не требуется от учащихся воспроизведение доказательств теорем, умения в овладении методом геометрических преобразований и применения его при решении задач. Основные виды движений – симметрия относительно прямой и точки, поворот, параллельный перенос – учащиеся должны усвоить при решении следующих задач:

1. Даны точки A и B. Постройте точку B’, симметричную точке B относительно точки A.

2. При симметрии относительно некоторой точки точка X переходит в точку X’. Постройте точку, в которую при этой симметрии переходит точка Y.

3. Даны точки A, B, C. Постройте точку C’, симметричную точке С относительно прямой AB.

4. Чему равны координаты точки, симметричной точке (-3; 4) относительно: 1) оси x; 2) оси y; 3) начала координат?