Смекни!
smekni.com

Использование компьютерных технологий в изучении наглядной геометрии (стр. 7 из 25)

Седьмой и восьмой варианты состоят из задач, при решении которых требуется творческое применение знаний. Здесь приходится анализировать сложные геометрические ситуации, самостоятельно открывать новые факты, устанавливать отношения между ними. Задачи из седьмого и восьмого вариантов рекомендовано давать учащимся после выполнения ими основной работы наравне со всеми учащимися класса в оставшееся время или использованы в качестве необязательного задания для домашней работы, а также на факультативных занятиях или занятиях математического кружка.

Математические диктанты предназначаются для систематизации теоретических знаний учащихся и могут предшествовать контрольной работе. Диктант представляет собой набор из 10 небольших задач по прямому применению полученных знаний о движениях из учебника.

В учебнике А.Д. Александрова и др. «Геометрия, 9» с углубленным изучением математики преобразования фигур рассматриваются в главе «Преобразования».

Планирование изучения материала:

Номер параграфа. Содержание материала. Количество часов.
9 класс. Глава 2. Преобразования. 18 ч.
678 Движения. Симметрия фигур.Подобие.Контрольная работа. 7 ч.3 ч.7 ч.1 ч.

Основной целью изучения данной главы является проникновение учащихся в сферу идей современной математики, в немалой степени являющейся математикой преобразований или же математикой, изучающей аксиоматически построенные теории. Материал, предложенный в учебнике, может быть освоен на уровне применения введенных понятий и теорем только в подготовленном классе.

Глава «Преобразования» изучается в 9 классе и завершает собой изучение планиметрии. При решении задач, предложенных авторами, наряду с материалом главы используются также практически все методы, теоремы и факты, которые были изучены ранее, для осуществления итогового повторения.

Определяются движения, заданные на всей плоскости и доказываются их свойства. На основе движений определяется равенство фигур. Изучаются виды движений: параллельный перенос, осевая симметрия, поворот и центральная симметрия. Проводится классификация движений, рассматривается композиция движений. Изложены теоремы о задании движений, замечание о распространении движения, теорема Шаля, неподвижные точки движений, два рода движений, ориентация. Большое внимание уделяется симметриям фигур. Учебник содержит различные задачи на геометрические преобразования, которые автор делит на разделы: разбираемся в решении (приведены решенные задачи), дополняем теорию, рисуем, планируем, находим величину, выводим уравнение, доказываем, исследуем, строим, применяем геометрию, занимательная геометрия, участвуем в олимпиаде. Например,

1. а) Докажите, что в результате переноса прямая переходит в прямую, ей параллельную, или в себя;

б) Даны две параллельные прямые. Каким переносом одна из них может быть получена другой?

в) Даны два равных и параллельных отрезка. каким переносом один из них может быть получен из другого?

г) Докажите, что в результате переноса вектор переходит в равный вектор.

2. Нарисуйте образ куба ABCDA1B1C1D1 в результате переноса на вектор

а)

; б)
; в)

3. а) В системе координат даны две точки A(2;1) и B(3;3). Как найти точку К на оси x, такую, что ломаная AKB кратчайшая? Как вычислить координаты точки К и длину этой ломаной?

б) Решите задачу «а» для точки L на оси y.

Учебник И.Ф. Шарыгина «Геометрия, 7-9» реализует авторскую концепцию построения школьного курса геометрии. Глава «Преобразования плоскости» изучается в 9 классе и завершает теоретическую часть курса планиметрии.

Планирование изучения материала:

Номер параграфа. Содержание материала. Количество часов.
9 класс. 12. Преобразования плоскости. 8 ч.
12.112.212.3 Движение плоскости. Виды движений плоскости.Гомотетия.Систематизация и обобщение знаний.Контрольная работа.Резерв. 1 ч.2 ч.1 ч.2 ч.1 ч.1 ч.

В отличие от геометрических курсов, в которых понятие движения положено в их основу, в данном учебнике такие виды движения, как симметрия относительно точки и относительно прямой, служат для доказательства теорем, а такие виды движения, как поворот и параллельный перенос являются объектом изучения.

В первом пункте вводится понятие движения: движением называется такое преобразование плоскости, которое не меняет расстояние между парами точек, т.е. если точки А и В в результате движения переходят в точки А’ и В’, то АВ = А’В’. Далее теорема 12.1. (основное свойство движений): результатом двух последовательных движений плоскости является движение плоскости – приводится доказательство теоремы, а затем рассматривают две основные теоремы о движении плоскости также с доказательствами. Теорема 12.2 (основной способ задания движения): любое движение плоскости полностью задается движением трех точек плоскости, не лежащих на одной прямой. И теорема 12.3 (о возможности представления любого движения через осевые симметрии): любое движение плоскости может быть получено с помощью не более чем трех осевых симметрий.

В следующем пункте рассматривают виды движений плоскости. Теорема 12.4. (о представлении параллельного переноса в виде двух симметрии): в результате двух последовательных осевых симметрии с параллельными осями любая точка А плоскости переходит в такую точку А’, что вектор АА’ постоянен для всех точек плоскости.

Такое преобразование называется параллельным переносом. Сам вектор АА’ называется вектором параллельного переноса.

И затем теорема 12.5 (о представлении поворота в виде двух симметрий): пусть две прямые

и
на плоскости пересекаются в точке О и образуют между собой угол α (α ≤ 90). В результате двух последовательных симметрии относительно прямых
и
мы получим поворот на угол 2α вокруг точки О. При этом направление поворота то же, что и у поворота на угол α, переводящего прямую
в прямую
с доказательством.

Здесь же рассматриваются такие темы как «Три осевые симметрии» и «Скользящая симметрия», отмеченные звездочкой, т.е. предназначены для углубленной подготовки. Задачный материал дифференцирован по уровню сложности.

К учебнику прилагается рабочая тетрадь В.Б. Алексеева, В.Я. Галкина и др., в которую включена тема «Преобразования плоскости». В тетради разобраны многие задачи, имеющиеся в учебнике, а также представлены другие задачи. Работа с тетрадью рекомендована строго после изучения материалов учебника. Задачи, содержащиеся в тетради, предполагают разную степень участия ученика в процессе решения. Решения некоторых задач приведены полностью, их надо внимательно прочитать и осознать, для того, чтобы следующие задачи решить по аналогии или с использованием похожих соображений. В решении большинства задач имеются пропуски, которые нужно заполнить: привести ссылку на формулы или теоремы, несложные вычисления. При этом оставленные отдельно слова и фразы помогут понять логику решения. Задания по теме «Преобразования плоскости» выделены в два занятия. В каждом занятии представлены задачи от простых, закрепляющих основные геометрические понятия и факты, до достаточно сложных, что помогает организовать работу учеников, как по базовой программе, так и по программе углубленного изучения движений.

Изучение геометрических преобразований в учебнике В.Г. Болтянского, Г.Д. Глейзера «Геометрия 7-9» начинается с центральной симметрии. Параграф 10 «Равенство фигур» имеет принципиальное значение для всего последующего курса. Здесь учащиеся впервые приобщаются к методу геометрических преобразований. Сравнение геометрических преобразований с функциями способствует как более легкому усвоению самого понятия геометрического преобразования, так и представлению о единообразии математики, о единстве алгебры и геометрии.

Заметим, что понятие функции, преобразования, или, как ещё говорят, отображения одного множества в другое, играет важнейшую роль не только в алгебре и геометрии, но и во всей современной математике, а также её приложениях.