Смекни!
smekni.com

Особенности обучения элементам геометрии в 5-6 классах с позиций пропедевтики изучения геометрии в средней школе (стр. 8 из 15)

В качестве целей изучения курса автор выделяет:

1. Развитие геометрических представлений учащихся посредством рисования геометрических фигур и тел изготовления их моделей.

2. Усвоение начальных приемов черчения с помощью линейки, угольника и циркуля.

3. Ознакомление со способами прямого и косвенного измерения длин, углов, площадей и объемов.

4. Усвоение некоторых элементарных сведений по геометрии, полезных в практической жизни и необходимых при изучении других предметов.

5. Активизация мышления путем постановки и решения геометрических задач.

6. Введение элементов логического мышления в степени и форме, доступных возрасту учащихся.

7. Развитие речи – письменной и устной – в области, относящейся к пространственным представлениям детей.

Автор считает необходимым познакомить учащихся с плоскими фигурами, например, среди них есть трапеция и параллелограмм, с их важнейшими свойствами и с пространными телами. Он не ограничивается лишь измерением длин, площадей и объемов этих геометрических объектов – это одна из линий предлагаемого им курса. Рассматриваются понятия равносоставленности и равновеликости, вычисляются площади трапеции, ромба, треугольника, причем не по выведенному правилу или формуле, а путем перекраивания этих фигур в равновеликие прямоугольники.

В предложенной методике активно и интересно используются свойства клетчатой бумаги для перерисовывания фигур, их построения, перекраивания, измерения длины и площади и др. Помимо построений на клетчатой бумаге, учащиеся знакомятся и с построениями на гладкой бумаге с использованием чертежных инструментов. Одним из основных типов задач здесь является построение фигур путем перегибания листа бумаги.

Отбор содержания и методика его изучения происходят в соответствии со следующими принципами [17].

1. Процесс обучения должен строиться не только в зависимости от содержания самого геометрического материала, но и от психологических особенностей детского возраста, и от общих целей образования.

2. Основными методическими принципами построения курса наглядной геометрии являются наглядность и максимальное количество практических упражнений конструктивного и изобразительного характера.

3. Отказ от дедуктивно-логического метода доказательства геометрических положений. В основу преподавания должен быть положен индуктивный метод, основанный на наглядном и практическом изучении конкретных фактов и последующем их обобщении.

4. Движение – важнейший фактор, как создания геометрических форм, так и уяснения их свойств.

5. Построение курса и метод его преподавания должны идти в развитии геометрического мышления от простого к сложному, от конкретного к отвлеченному.

6. В учебной работе необходимо задействовать все виды памяти: зрительную, моторную, слуховую.

7. Необходимо отказаться от заучивания определений, правил и др. Вместо этого необходимо вводить «живое описание» детьми своих наблюдений, подмеченных геометрических свойств.

К недостаткам рассмотренного подхода можно отнести отсутствие в курсе пространственных геометрических объектов.

Следует отметить, что многие идеи, высказанные П.А. Карасевым, остались нереализованными на том уровне развития теории обучения, так как школа тех лет ориентировалась в основном на репродуктивные методы обучения и не была готова к организации самостоятельной исследовательской деятельности учащихся по изучению геометрических объектов. Переориентация современной методической системы обучения на приоритет развивающей функции обучения потребовала, во-первых, пересмотра содержания геометрического образования и, во-вторых, нового структурирования всей геометрической линии.

Следующий автор – В.А. Гусев. В своей программе автор реализует идею фузионизма. Отличительной чертой данной программы является параллельное изучение планиметрии и стереометрии - плоские фигуры и их свойства чаще всего изучаются не сами по себе, а как части пространственных геометрических фигур. Курс геометрии в 5-6 классах направлен на всестороннее индивидуальное развитие учащихся с учетом их способностей и возможностей. В процессе изучения геометрии целенаправленно реализуется формирование умственного развития учащихся через отработку конкретных приемов мыслительной деятельности: прежде всего синтеза и анализа, затем абстрагирования, сравнения, обобщения и аналогии. Логика выступает как средство подтверждения наглядности и практической значимости. Наглядность в изложении курса является приоритетной. Автор предлагает множество геометрических задач на развитие пространственного воображения, задач творческого и творческо-поискового, исследовательского характера, что должно способствовать развитию геометрического мышления учащихся.

Богатый теоретический и задачный материал по каждой теме курса позволяет формировать у учащихся не только интуитивно-геометрические представления, но и учит серьезному теоретическому обоснованию решений.

И еще один автор, чей подход наиболее интересен, разработанный в отделе математического образования ИОСО РАО (И.Ф. Шарыгин, Г.В. Дорофеев, С.Б. Суворова, Л.В. Кузнецова и др.), который предполагает три основных концентрата изучения геометрии в школе: наглядно-эмпирическая геометрия (1-6 классы), систематический курс планиметрии (7-9 классы), систематический курс стереометрии (10-11 классы). Важным отличием такой структуры школьного геометрического образования от предшествующей является возможность овладения содержанием на двух уровнях – наглядно-эмпирическом (1-6 классы) и систематическом (7-11 классы). В качестве основной цели этапа, связанного с младшим подростковым возрастом, выдвигается развитие пространственных представлений и воображения, геометрическая интуиция, изобразительно-графических навыков, глазомера, изобразительности.

Так, И.Ф. Шарыгин обсуждает цели, задачи, особенности наглядно-эмпирического подхода к изучению геометрии в 5-6 классах и реализует их в пособии «Наглядная геометрия», написанном в соавторстве с Л.Н. Ерганжиевой [40].

По мнению И.Ф. Шарыгина, логикой изложения содержания должно стать сочетание индуктивного подхода, основанного на интеллектуально-практическом опыте учащихся, и начал дедукции. В такой курс могут быть включены наглядные доказательства. И.Ф. Шарыгин высказывает положение об отличии курса геометрии 5-6 классов от курса 1-4 классов, которое заключается в том, что, несмотря на значимость геометрического материала в начальной школе, он выполняет вспомогательную роль по отношению к арифметическому материалу. Здесь целью является выработка прочных ассоциативных связей в парах «фигура-число» и «фигура-слово»: учитывается объем изучаемых геометрических объектов и отношений, вводятся различные классификации, увеличивается доля графических упражнений и заданий, выполняемых в визуальном плане, вводятся новые методы исследования. Одной из отличительных особенностей курса геометрии 5-6 классов является задача заинтересовать, привлечь внимание учащихся к математике, показав многогранность и разнообразие ее проявлений. Это связано с тенденцией к снижению на рубеже перехода в основную школу интереса к учению.

§2.2 Сравнительный анализ геометрического материала, содержащегося в учебниках

В данном параграфе проведем сравнительный анализ геометрического материала, содержащегося в следующих учебно-методических комплектах по математике:

1. Математика: учебник для 5 класса общеобразовательных учебных заведений / Г.В. Дорофеев, И.Ф. Шарыгин, С.Б. Суворова и др. – М.: Просвещение, 2007

2. Математика 6 класс: Учебник для общеобразовательных учебных заведений / Г.В. Дорофеев, И.Ф. Шарыгин и др. - М.: Дрофа, 2000

3. Математика: Учебник для 5 класса общеобразовательных учреждений /Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд – М.: Мнемозина, 1997.

4. Математика: Учебник для 6 класса общеобразовательных учреждений /Н.Я. Виленкин, В.И. Жохов, А.С. Чесноков, С.И. Шварцбурд – М.: Мнемозина, 2007.

Все учебники и по содержанию, и по стилю выстроены так, чтобы обеспечить школьникам достаточно мягкий и безболезненный переход к систематическому изучению в 7 классе курса геометрии. Содержание учебников полностью отвечает требованиям стандарта математического образования 2004 года и опирается на тот минимум содержания, который предлагают учебники для начальной школы, что дает возможность их использования в качестве продолжения любого курса начальной школы, как традиционного, так и развивающего направлений. Остановимся подробно на каждом комплекте.