Смекни!
smekni.com

Решение задач на экстремум (стр. 10 из 16)

Iуровень сложности.

Задача 1.

На стороне ВС треугольника ABC найти точку D так, чтобы отрезок AD имел:

а) наибольшую длину;

б) наименьшую длину.

Решение:

а) Пусть di - произвольная внутренняя точка ВС

и АВ > АС. Так как

AD1B>
C>
B, то AB >ADl.

Следовательно, отрезок AD имеет наибольшую длину, если он совпадает со стороной АВ. Если АВ = АС, то имеем два решения: стороны АВ и АС.

б) Пусть в треугольнике ABC ни один из углов В и С не тупой. Тогда основание высоты, проведенной из вершины А находится на стороне ВС и отрезок AD имеет наименьшую длину, если AD

BC.

Пусть теперь угол С тупой. В этом случае основание Н высоты АН треугольника лежит на продолжении стороны ВС за точку С. Так как наклонная А С меньше всякой другой наклонной AD1 с основанием на ВС, то отрезок AD имеет наименьшую длину, если он совпадает со стороной АС треугольника.

Задача 2.

Прямая MN отсекает от данного угла А треугольник данной площади Q (М и N - точки на сторонах угла А). При каком условии отрезок MN имеет наименьшую длину, и какова эта длина?

Решение:

Обозначив отрезки AM и ANсоответственно через х и у, по теореме косинусов получим:


MN2 = x2 + y2 - 2xycosA = (x-y)2 + 2xy (1-cosA) = (x-y)2 + 4 Q tg

так как ½ xysin А = Q.

Следовательно, при х= у (AM = AN) отрезок имеет наименьшую длину, равную

.

Задача 3.

Под каким углом к берегу нужно направить лодку, что бы за время ее переправки лодку как можно меньше снесло течением, если скорость течения 6 км/ч, а собственная скорость лодки – 3 км/ч.

Решение.

Необходимо направить лодку так, чтобы ее абсолютная скорость (относительно берегов) составляла, возможно, больший угол с берегом.

Пусть вектор

- скорость лодки относительно воды. Сумма
+
=
дает абсолютную скорость лодки (относительно берегов). Длина вектора

=3 и его можно направить в любую сторону. Множество возможных положений точки М – окружность радиуса 3 с центром в точке А.

Из всех векторов

наибольший угол с берегом составляет
, направленный по касательной к окружности. Получаем прямоугольный треугольник, у которого катет вдвое меньше гипотенузы. У такого треугольника угол равен 600.

II уровень сложности.

Задача 1.

Какой из всех параллелограммов с заданными диагоналями а и b имеет наибольшую площадь?

Решение:

Граничное значение переменной площади S параллелограмма ABCD непосредственно заметить трудно, но если эту переменную площадь выразить формулой

S = АС• DK= ah, то легко заметить, что S = ah ≤ ab, так как h ≤

.

Если использовать формулу S = abs'ma, то наибольшую площадь S нетрудно найти, граничное значение sin а хорошо известно.


Задача 2.

Расстояние от пункта А до пункта В 4 км, а от пункта В до пункта С вдвое больше. Какое наибольшее и наименьшее расстояние может быть от пункта А до пункта С?

Решение:

Расстояние АС зависит от места расположения

точки С. Так как расстояние ВС постоянное, то точка С

принадлежит точкам окружности с R = ВС, В - центр. Легко заметить, какие граничные значения может принимать АС, т.е.

4 = АСг < ACi < AB + BCi = 12.

Отсюда, max [AСi] = 12 km

min [ACi] = 4 km

Искомыми точками Ci являются концы диаметра длиной 16 км с центром окружности в пункте В.

Задача 3.

Данный треугольник ABC разделить отрезком наименьшей длины на две равновеликие части.


Решение:

Пусть а<b<с, тогда с < а + b < 2b, т.е. b<c<2b. Как показано выше, длина наименьшего отрезка MN, отсекающего от данного треугольника ABC треугольник площади 1/2 S с углом А, равна

. Отрезок MN и является искомым, так как он меньше наименьших отрезков, отсекающих треугольники с углами В и С:

Таким образом, на сторонах наименьшего угла А треугольника ABC

нужно построить точки М и N так, чтобы АМ= AN=

.

III уровень сложности.

Задача 1.

На сторонах АВ и АС треугольника ABC найти соответственно точки М и N так, чтобы треугольник ABC делился отрезком MN на две равновеликие части и чтобы отрезок MN имел наименьшую длину.

Решение:

Пусть MN - искомый отрезок. Обозначим площадь треугольника ABC через S,


тогда площадь треугольника AMN равна

S.

AM = AN и MN =

Выразим отрезок AM через стороны b и с треугольника ABC. Так как площадь треугольника AMN составляет половину площади треугольника

ABC, то АМ2 sin А=

bcsinA, откуда AM =
.

По условию точки M и N должны лежать на сторонах АВ и АС треугольника. Значит, полученное выражение для AM является решением задачи

лишь при условии, что

не больше каждой из сторон b и с треугольника.

Пусть b ≤ с, тогда

≤ b в том и только в том случае, если с ≤ 2b.

Итак, если b < с < 2b, то на сторонах АВ и АС треугольника ABC строим

точки М и N такие, что AM=AN =

.

Нетрудно показать, что если с > 2b, то искомым отрезком является медиана треугольника, проведенная к стороне с, причем длина этой медианы

более

.

Задача 2.

На какое наименьшее число треугольных пирамид (тетраэдров) можно разбить куб?

Решение.

Куб ABCDA1B1C1D1 можно разбить на 5 тетраэдров: если отсечь от него тетраэдры BACВ1 и DACD1, A1B1D1А и C1B1D1С, то останется еще пятый тетраэдр ACB1D1. Он правильный. Попробуем установить, что меньше чем на 5 тетраэдров куб разбить нельзя. Допустим, что куб ABCDA1B1C1D1 разбит на некоторое число тетраэдров.

При этом грань АВСD куба разбивается на части, являющиеся гранями не менее чем двух тетраэдров (квадрат АВСD может быть разбит на 2 или большее число треугольников ), причем сумма площадей оснований этих тетраэдров равна a2, а высота каждого из них не больше а, поэтому объемов примыкающих к грани АВСD тетраэдров разбиения не превосходит

а2 а=
.