Смекни!
smekni.com

Решение задач на экстремум (стр. 8 из 16)

- вычислять производные и первообразные элементарных функций, используя справочные материалы;

- исследовать в простейших случаях функции на монотонность, находить наибольшие и наименьшие значения функций, строить графики многочленов и простейших рациональных функций с использованием аппарата математического анализа;

- вычислять в простейших случаях площади с использованием первообразной;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- решения прикладных задач, в том числе социально-экономических и физических, на наибольшие и наименьшие значения, на нахождение скорости и ускорения;

Исходя из требований стандарта можно сделать вывод, что учащиеся должны владеть элементарными навыками математического моделирования и в частности, уметь применять математический аппарат при решении задач на отыскание наибольших и наименьших значений различных величин при заданных условиях. Таким образом реализуется прикладная направленность обучения математике и осуществляются межпредметные связи с другими дисциплинами. В первую очередь учащиеся должны владеть универсальным методом решения задач на оптимизацию, методом, включающим в себя построение некоторой функции и отыскание ее экстремумов с помощью производной. Алгоритм решения задач этим методом включает в себя три основных этапа:

Первый этап. Составление математической модели:

1. Анализ условий задачи, выделение оптимизируемой величины, т.е. величины, о наибольшем или наименьшем значении которой идет речь. Обозначьте ее буквой у (или S, R, V - в зависимости от фабулы).

2. Одна из участвующих в задаче неизвестных величин, через которую сравнительно не трудно выразить оптимизируемую величину, принимают за неизвестную переменную и обозначают её буквой х (или какой либо другой буквой). Установка реальных границ изменения неизвестной переменной, в соответствии с условиями задачи.

3. Исходя из условия задачи, выразить у через х. Математическая модель задачи представляет собой функцию у=f(х) с областью определения Х, которую нашли на втором шаге.

Второй этап. Работа с составленной моделью.

На этом этапе для функции у=f(х), х

Х находится унаим или унаиб в зависимости от того, что требуется в условии задачи.

Третий этап. Ответ на вопрос задачи.

Получение конкретного ответа на вопрос задачи, опираясь на результаты, полученные на этапе

работы с моделью.

Помимо универсального метода решения задач на экстремумы, полезно было бы познакомить учащихся и с методами решения этих задач, опирающимися на сведения из элементарной математики (метод перебора, метод преобразования плоскости, метод оценок и неравенств). Эти методы предполагают алгебраический или геометрический подход к решению задачи, тем самым актуализируя знания учащихся из курса алгебры и геометрии и развивая их математическую интуицию.

Таким образом, в понятие задачи на экстремумы входит очень широкий спектр задач, весьма разнообразных по уровню сложности, а значит, в этом задачном материале возможно и весьма полезно провести уровневую дифференциацию таких задач. Т.е. распределить предъявляемые учащимся задачи по уровням сложности и использовать эту дифференциацию при проведении практических занятий с учащимися.


Глава 3. Разработка факультативных занятий по теме: «Решение экстремальных задач»

Еще на рубеже XIX и XX веков некоторые педагоги поняли, что преподавание в общеобразовательной школе какого-либо предмета по обязательной единой общегосударственной программе становится существенно более успешным, если его дополнить циклом не обязательных для учащихся, предназначенных только для желающих, внепрограммных групповых занятий.

Такие занятия должны были, прежде всего, учитывать «местные» условия, а именно: реальные и потенциальные запросы и интересы конкретного коллектива учащихся данного класса, и отдельно каждого ученика.

Так возникла идея факультативных занятий в школе.

Хорошо поставленные факультативы обеспечивают высокое качество знаний, повышаю уровень общего развития учащихся, стимулируют учебную деятельность и повышают интерес к предмету.

Задача факультатива состоит в том, чтобы в результате посещения занятий ученик углублял знания, полученные на уроках, совершенствовал умения и навыки, развивал мыслительные и творческие способности.

При проведении факультатива необходимо установить оптимальное сочетание теоретической и практической частей.

Очень важным является проведение факультатива в 11 классе, целью которого является подготовка учащихся к сдаче ЕГЭ.

Разработка факультативных занятий по теме:

«Решение задач на экстремум».

Занятие 1

Тема:«Геометрический подход к решению задач на экстремумы».

Тип: Комбинированный урок.

Цели:

Обучающая: изучение метода преобразования плоскости для решения экстремальных задач.

Развивающая: развитие мыслительной деятельности, создать условия для продвижения учащихся в интеллектуальном развитии.

Воспитательная: воспитание интереса к математике, воспитание эмоционально-положительной направленности на практическую деятельность..

Задачи: вспомнить понятие «экстремальная задача», дать понятие метода преобразования плоскости, рассмотреть применения метода при решении задач.

Оборудование: доска, мел, карточки с заданиями.

План урока

Содержание Методы и приемы Время
1. Орг. момент Сообщение цели урока Инструктаж учителя 3 мин
2. Изучение нового материала1.Суть метода преобразования плоскости.2. Пример решения задачи методом преобразованием плоскости. Лекция (объяснительно-иллюстра–тивный с элементами проблемного изложения)Учащиеся конспектируют, задают вопросы. 20 мин
3. Закрепление пройденного материала. Учитель предлагает учащимся задачи для самостоятельного решения. Учащиеся самостоятельно решают задачи своего уровня сложности (репродуктивный, частично-поисковый) 29 мин
4. Подведение итогов беседа 3 мин
5. Запись домашнего задания Инструкция учителя(репродуктивный) 5 мин

Ход урока:

Деятельность учителя Деятельность учащихся
I. Орг. момент. Здравствуйте, садитесь. Откройте тетради, запишите число.Сегодня мы с вами начинаем изучение темы "Решение задач на экстремум". На занятиях по этой теме мы рассмотрим решения задач на нахождение наибольших и наименьших величин различными методами. Начнем мы с геометрических методов, сегодня мы рассмотрим метод преобразования плоскости. Но сначала давайте вспомним, какие задачи называют экстремальными, и где в повседневной жизни мы с ними встречаемся? Конечно, с нахождением максимальных и минимальных значений, наиболее выгодных условий и т.д. – т.е. с нахождением (выбором) лучшего мы сталкиваемся постоянно. И очень часто лучший вариант не очевиден. В его нахождении помогает математика. Существует много решения таких задач, начнем с преобразования плоскости. Садятся Выполняют инструкции учителя, слушают, задают вопросы.Высказывают свои предположения.Слушают учителя.
II. Лекция. 1. Суть метода преобразования плоскости.В качестве одного из основных подходов решения геометрических экстремальных задач используется метод преобразования плоскости. Суть метода заключается в следующем.Пусть требуется найти экстремум элемента х фигуры F, однозначно определенного элементами x,аi,i = 1,2,...,n.Метод нахождения экстремума:3) Элементу х зададим определенное значение х = С и решим задачу на построение фигуры Fпо заданным элементам х и аi.4) Решив эту задачу, считаем элемент с перемещением. Затем, применяя те или иные преобразования плоскости, замечаем те особенности, которые возникают при достижении элементом х максимального или минимального значения.Выделение указанной особенности позволяет сделать заключение об экстремуме элемента х фигуры F.Посмотрим применение метода при решение конкретной задачи.2. Пример решения задачи методом преобразованием плоскости.Решим следующую задачу: построить прямую, проходящую через вершину А треугольника ABC, так, чтобы сумма расстояний до нее от вершин В и С была наибольшей.Сначала построим треугольник АВС. Через вершину А проведем произвольную прямую EF .
Из точек В и С опустим перпендикуляры KBи CNна
EF. Если КВ=х, CN=y, то расстояние
KB+CN=x+y. Построим точкуB}=ZA(B) и точку K1=ZA(K), тогдах + у = KB + GN = К1В1 + CN< В1 C1, так как В 1 К 1 ≤ В 1 М и СN≤ CM где М- точка пересечения прямой EFи отрезка В{С.
Мысленно вращая прямую EF вокруг точки А так, чтобы точка М перемещалась по В 1С от точки В1 до точки C1 замечаем, что х + у ≤В1 С. Знак равенства имеет место в случае, когда EF
В1 С.Если прямую EFмысленно поворачивать дальше вокруг точки А, то точка М будет перемещаться по отрезку ВС от точки С до точки В, а сумма х + у < ВС. Знак равенства достигается тогда, когда EF
ВС.
Ученики конспектируют, задают вопросыСлушают учителя, записывают решения в тетрадь, задают возникающие вопросы.
III Закрепление пройденного материала. Сейчас возьмите карточки с заданиями своего уровня и решите предложенные там задачи. Учитель следит за тем, что бы все работали, отвечает на возникающие вопросы. Если какая-та задача вызывает у многих затруднения, ее (полностью или частично) прорешивают на доске. Учащиеся берут карточки с задании-ями и преступаю к решению задач. Если возникают трудности, они обращаются за по-мощью к учителю.
IV Подведение итоговИтак, сегодня мы с вами изучили один из методов решения экстремальных задач, рассмотрели применение этого метода при решении задач.Какие у вас есть вопросы по пройденному сегодня материалу? (отвечает на вопросы, если они есть) Задают вопросы, которые остались непонятными.
V Запись домашнего заданияДомашнее задание: посмотреть конспект сегодняшнего занятия, дорешать 2 задачу. Записывают.

Задачи предлагаемые учащимся.