Смекни!
smekni.com

Викладання теми "Історія інформатики" в школі (стр. 2 из 14)

Історія розширює перспективи фахівця, вона дозволяє досліджувати внутрішній світ і спонукальні причини творчості чудових людей минулого. Вона дає можливість учитися на уроках минулого й у такий спосіб удосконалювати свою діяльність. Саме віднесеність сучасного стану науково-методичного пізнання до цілісності пізнавального історичного процесу, тільки вивчення у перспективі його історії в цілому та у співставленні з генетично попередніми станами дозволяє виявити всі чинники історичного розвитку, які зумовили сучасний стан методики. За останні роки в усьому світі спостерігається підвищений інтерес до історії науки. Це особливо відчувається на зламі століть, тисячоліть, коли з’являється підсвідоме прагнення "підводити підсумки". Ця тенденція явно виражена у виданнях типу "Підсумки століття", "Підсумки науки" і ін.

Для країн СНД причиною активного інтересу до історії науки є падіння заборон і цензури. Учені й фахівці протягом десятиліть були змушені зберігати свої спогади про минулі події, особливо - про події, пов'язані з репресіями, яким піддавалися наука й передові вчені в роки радянської диктатури. Поруч з вченими-генетиками особливо жорстких утисків зазнавали і вчені-кібернетики, що знайшло відображення в сучасній інформатиці. Тепер ці люди мають можливість висловитися.

Знання історії будь-якої науки дуже важливе для цілісного її розуміння, адже бачення ретроспективи часто уможливлює бачення перспективи. Принцип історизму - один з дуже важливих дидактичних принципів, оскільки логіка викладення навчального матеріалу часто співпадає з логікою розвитку науки, що викладається. Освітня модель часто базується на покроковому історичному екскурсі, при якому процес навчання являє собою не просто кількісне накопичення знань, а обов’язково на різних етапах навчання відкриває якісно нові й історично обумовлені наукові надбання. Учень протягом всього періоду навчання поступово отримує порції інформації, які відображають наукову думку в певний період часу. Ця інформація структурована таким чином, що відображає реальну історичну картину розвитку наукового пізнання певного явища чи об’єкту.

Проілюструємо це на прикладах.

Приклад 1. Вивчення поняття атому.

Процес вивчення будови атому вивчається з урахуванням історичного аспекту. На початковому етапі учням пропонується визначення атому як найменшої неподільної частинки (рис. 1.1). Пізніше вивчається планетарна модель атому з електронами, що рухаються по орбіті навколо ядра, подібного до Сонця (рис. 1.2). На наступному етапі вивчається модель Нільса Бора (рис. 1.3), згідно якої енергія, що вивільнюється чи поглинається, є результатом переходу електрона з одного стану в інший. У старшій школі вивчається квантова будова атома. (рис. 1.4).


Рис. 1.1

Рис. 1.2

Рис. 1.3

Рис. 1.4


Розглядаючи розвиток наукової думки стосовно поняття атому, можна відмітити її відповідність логіці викладення цього поняття в шкільній програмі. Ломоносов пояснив сутність атому як найменшої неподільної частинки. Пізніше Резерфорд представив планетарну модель атому, згодом Нільс Бор запропонував свою модель, що так і називається “модель Нільса Бора”. На сучасному етапі розглядають ідею квантування. Виявилося, що багато величин, що вважалися безперервними, мають дискретний ряд значень. На базі цієї ідеї виникла квантова механіка, що описує закони поводження мікрочастинок.

Приклад 2. Поняття світла.

Оптика відноситься до таких наук, первісні представлення яких виникли в далекій давнині. Протягом своєї багатовікової історії вона зазнавала безперервного розвитку і в нинішній час є однією з фундаментальних фізичних наук, збагачуючись відкриттями нових явищ і законів. Поняття світла в загальноосвітній школі вивчається з урахуванням історії його розвитку. Початковим уявленням про світло є пряма лінія, на основі цього факту формулюються закони: прямолінійність поширення світла; явище відображення світла і закон відображення; явище переломлення світла; фокусуюча дія увігнутого дзеркала. На наступному етапі вивчається хвильова оптика, в старшій школі має місце квантова оптика, квантово-хвильовий дуалізм.

Дійсно, розвиток наукової думки в даній області зумовив сьогоднішню шкільну програму з фізики. Евклід є основоположником вчення про прямолінійне поширення світла (300 років до н.е.). Виявлені Евклідом закономірності збереглися й у сучасній геометричній оптиці. У ті ж роки були відкриті наступні факти: прямолінійність поширення світла; явище відображення світла і закон відображення; явище переломлення світла; фокусуюча дія увігнутого дзеркала. Древні греки поклали початок галузі оптики, що одержала пізніше назву геометричної. (Рис. 1.5)


Рис. 1.5

На базі численних дослідних фактів у середині XVІІ століття виникають дві гіпотези про природу світлових явищ: корпускулярна (світло є потік частинок, що викидаються з великою швидкістю тілами, які світяться); хвильова (світло представляє собою продовжні коливальні рухи спеціального світлоносного середовища - ефіру – що збуджується коливаннями часток тіла, яке світиться). Весь подальший розвиток вчення про світло аж до наших днів – це історія розвитку і боротьби цих гіпотез, авторами яких були І. Ньютон і Х. Гюйгенс. Погляди на природу світла в XІХ-XX сторіччях розвивалися і 1900 р. німецький фізик Планк висунув гіпотезу про квантовий характер випромінювання (випромінювання світла носить дискретний характер, поглинання відбувається теж дискретно-порціями, квантами). У 1913 р. датський фізик Н. Бор опублікував теорію атома, у якій об'єднав теорію квантів Планка-Ейнштейна з картиною ядерної будівлі атома. Таким чином, з'явилася нова квантова теорія світла, що народилася на базі корпускулярної теорії Ньютона. У ролі корпускули виступає квант. З виникненням квантової теорії з'ясувалося, що корпускулярні і хвильові властивості є лише двома сторонами, двома взаємозалежними проявами сутності світла. Обидві ці моделі можуть бути використані одночасно, і в залежності від умов перевага віддається одній з них [2].

Велику цікавість представляє історія розвитку диференціально-інтегрального числення. Цей розділ є особливо складним для розуміння, але у випадку, коли він викладається з урахуванням історії, яку пройшла дана наука до сучасних представлень, ефективність навчання значно підвищується. Про це свідчить досвід відомого харківського вченого і педагога В.О. Марченка.

При представлення матеріалу в історичному ракурсі у учнів з’являється можливість з’ясувати причинно-наслідковий характер наукових відкриттів, їх закономірності, пережити їх, відстежити градацію людського розуму, робити анонси та творчо розвиватися і збагачувати власний кругозір.

Слід також відзначити, що реалізація принципу історизму сприяє посиленню загальноосвітньої значущості шкільного курсу інформатики, а також має велике виховне значення через формування патріотизму, любові до своєї батьківщині, розвитку національної самосвідомості. Розглядаючи питання історії інформатики, треба відмітити, що ця нова область - одне з найбільших досягнень 20-го століття. Виникла вона в середині століття і одразу розвивалася з надзвичайною швидкістю й до кінця століття дала людям такі могутні засоби обробки та передачі інформації, які дозволяють із повною підставою говорити про нову технічну революцію. Ці чудові, фантастичні засоби можуть принести людям благополуччя, статок, фізичне й духовне процвітання. Однак, у той же час, вони таять у собі більші небезпеки, подібно іншим великим досягненням людського розуму (атомна енергія, генетика і ін.). Вивчаючи історію інформатики, життя й діяльність її головних діючих осіб, їхні удачі й помилки, ми, ймовірно, зможемо точніше вибирати напрямок подальших досліджень і розробок, попереджати небажані наслідки.

Одна з європейських робочих груп програми ESPRІ, що займається новітніми інформаційними технологіями й базується в одному з університетів Греції, вибрала своїм девізом: "USE POWER ІNTELLІGENTLY" (силу використовуй порядно), а в якості логотипу - картинку, що зображує міф про Дедала і Ікара. Це попередження із древньої історії дуже актуальне в наші дні й повинне стати девізом кожного фахівця. Дослідження з історії інформатики ведуться досить широко в передових країнах світу. З 1978 року в США виходить солідний щоквартальний журнал "ІEEE Annals of the Hіstory of Computіng"(Літопис із історії комп’ютерів). З'являються цікаві, глибокі монографії, написані досить кваліфікованими авторами. Проводяться представницькі міжнародні конференції по різних аспектах історії інформатики. Так, у Франції, починаючи з 1986 року, кожні 3 роки організовуються конференції "Hіstoіre de lіnformatіque" (Історія інформатики), які супроводжуються виставками по історії комп'ютерів. П’ята конференція цієї серії проходила у квітні 1998 року в Тулузі. У серпні 1998 р. у Падерборне (Німеччина) була організована міжнародна конференція по історії комп'ютерів. Вона проходила на базі спеціального архітектурно-музейного комплексу "MuseumsForum", побудованого Хансом Ніксдорфом, успішним підприємцем і меценатом. Цікаво відзначити, що вихідний фонд цього музею обчислювальної техніки склала особиста колекція Никсдорфа. Починаючи з 1994 року, у рамках Міжнародних Конгресів ІFІ проводяться спеціальні сесії "Pіoneer Day" (і відповідні виставки), де доповідаються й демонструються роботи першовідкривачів обчислювальної науки й обчислювальної техніки. Чергова сесія "Pіoneer Day" проходила у вересні 1998 року в Будапешті, під час XV ІFІ World Computer Congress.