Смекни!
smekni.com

Позакласна робота з математики у молодших класах (стр. 4 из 11)

Діти люблять незвичайні задачі в віршах. Тому в звичну для цього хвилину вчитель може почати бесіду так: “Діти, ви знаєте вірш С.Я.Маршака “Багаж”?

Звичайно серед дітей знайдуться такі, які знають його напамять. Після цього запропонувати прочитати його хором. А потім сказати:”Тепер послухайте задачу:

Дама здавала в багаж;

Диван, чемодан, саквояж,

Картинку, корзинку, картонку

І маленьку сабачонку.

.............................................

Але тільки пролунав дзвінок,

Втікло з вагона щеня.

Діти, порахуйте швидше,

Скільки залишилось речей?

З цікавістю діти беруться відгадувати прості ребуси. При цьому необхідно запропонувати не будь – які ребуси, а тільки ті, які мають, визначений зв’язок з математикою: або в його зображенні зустрічаються математичні знаки, або в відповідях утримується математичний термін, або має місце першої і другої ознаки одночасно. Ребуси можна раніше зобразити на аркушах паперу. Тоді в любий час вчитель може запропонувати дітям їх для відгадування. Наприклад, вчитель каже: “ Діти, відгадайте, які слова тут написані за допомогою букв та інших знаків:

Пі2л , 7я, мі100, 100лиця.

Діти завжди з зацікавленням відгадують загадки. Тут також слідує звернути увагу на те, що загадки повинні мати якісь математичні елементи. Частіше всього таким елементом є число, яке утримується в загадці і служить одним із ознак, по якому відбувається шукання відповіді на цю загадку. В інших загадках можуть зустрічатися математичні відношення (“рівність”, “більше”, “менше”) або відповіддю служить термін

Пов’язаний з математикою.

Наприклад:

1) Дім без вікон та дверей, як зелений сундучок,

В ньому 6 кругленьких діточок.

Називається... ( стручок)

2) Що це за 7 братів: роками рівні, іменами різні. (дні неділі)

Корисно буває запропонувати і задачі – жарти:

1) Росте 4 берези. На кожній березі по 4 гілки. На кожній гілці є по 4 яблука. Скільки всього яблук? ( На березі яблука не ростуть)

2) 4 мишки гризли скоринку сиру. Підкралась кішка і схопила 1 мишку. Скільки мишок продовжувало гризти скоринку сиру? ( Ніскільки, всі миші порозбігалися)

В вільні хвилини діти з задоволенням можуть приймати участь в якій несуть грі. Наприклад: можна провести з невеликою групою дітей гру “Арифметичний квач”. Беручи участь в грі, діти закріплюють в памяті склад числа 10. гра заключається в наступному. Діти становляться в коло. Один учень є ведучим і становиться в центрі кола. У дітей, які стоять до кола, прикріплені картки з числами від 0 до 10. це в тому випадку, коли крім ведучого, беруть участь в грі ще 11 чоловік. Потім учень – ведучий голосно називає число, наприклад8. тоді учень який стоїть в колі і має число 8 , оббігає коло, щоб доторкнутися до учня з числом 2, яке доповнює 8 до 10. щоб не дати, коли його “заквачують”, учень з 2 повинен швидко здогадатися, що доповнення до 10 число знаходиться в нього, оббігти коло в ту саму сторону, що і 8 і стати на своє місце. Якщо 8 не “ заквачує” 2, то учень з 8 становиться в коло, а минулий ведучий на його місце. При цьому минулий ведучий одночасно отримує від нового ведучого і картку з числом 8 , прикріплює до себе на грудях.

Якщо 8 “заквачила” 2 , то учень з числом 2 становиться ведучим, віддаючи свою картку минулому ведучому.

Примітка 1: Якщо ведучий скаже голосно число 10, то, крім учня, який має на картці число 10, повинен оббігати коло і учень з числом 0.

Примітка 2: Якщо учнів, які приймають участь в грі, менше 12, то звичайно не беруться числа 10, 9, 8 і т. д. І доповнення проводиться до найбільшого з прикріплених на картках чисел. Наприклад, в грі разом з ведучим беруть участь 9 чоловік. Тому в колі будуть стояти 8 учнів з прикріпленими числами від 0 до7. в процесі гри доповнення проводиться до числа 7.

Примітка 3: Якщо граючих виявилося більше 12, то доповнення можна вичислити і до більшого числа. Якщо, наприклад, граючих 15, то доповнюють до числа 14.

З учнями 2 і 3 класів можна провести гру “Знай таблицю множення”. Зміст гри наступний. Учасники стають в одну шеренгу. До грудей кожного з них прикріпляються номера від 1 до 9 (послідовно, разом з ведучим в грі можуть приймати участь 10 чоловік). Ведучий називає будь – яке утворення з таблиці множення, наприклад 35. число 35 утворилось від множення 5 і 7 . отже, з шеренги повинні вибігти ті діти, у яких приколені номера 5і 7 , і, добігши до раніш вказаного місця, повернутися в шеренгу. Хто скоріше повернеться на своє місце, той виграє. Він отримує прапорець. Якщо ведучий сказав таке число, яке є добутком двох різних пар чисел ( наприклад, 24 = 6* 4 та 24 = 8*3 ), то з шеренги вибігають всі четверо. Учень, який виграв першим 2 прапорця, становиться ведучим, а ведучий займає його місце. Потім ведучого змінює наступний, отримавши 2 або 3 прапорця. Всі учні, які отримали прапорці, вважаються гарно знаючими таблицю множення.

При проведенні хвилин цікавої математики можна запропонувати будь – яку вправу з рахівними паличками, тощо.

В хвилини відпочинку з дітьми можна проводити гру “Кінцівки” . в процесі цієї гри діти вправляються у виконанні безпосередніх висновків з суджень з відношеннями. Вона корисна тим, що готує дітей до свідомого рішення задач на збільшення і зменшення числа на декілька одиниць і в декілька разів, даних в непрямій формі. Приведемо приклади проведення цієї гри.

Вчитель каже: “Проведемо гру “Кінцівки”. В неї можуть брати участь 3 , 4 і більше учнів. Діти становляться в коло. Я буду починати речення, а ви повинні його правильно закінчити. Закінчувати речення повинен той, до кого я доторкнуся рукою. Якщо “кінцівка” учня опиниться не вірною, то він виходить з кола, а хто залишився в колі стараються вірно закінчити речення. Виграють ті, хто вірно давав “кінцівки” і залишився в колі.”

Вчитель: “Починаю речення: “Якщо підвіконня вище стола, то...”

Учень: “... то стіл нижче підвіконня”.

Далі речення можуть бути наступними:

- Якщо Саша по росту рівний Петру, то Петро...(по росту рівний Саші)

- Якщо Катя стоїть лівіше Тані, то Таня...( стоїть правіше Каті)

- Якщо в мене в правій руці рахівних паличок на 2 більше чим в лівій, то в лівій руці...( паличок на 2 менше чим в правій)

- Якщо Марія живе від школи дальше ніж Ніна, то Ніна...(живе від школи ближче ніж Марія)

- Якщо сестра старша ніж брат, то брат...( молодший ніж сестра)

- Якщо олівець коротший лінійки, то лінійка...(довша олівця).

Позакласні заняття

В результаті знайомства дітей з елементами цікавої математики в хвилини відпочинку може виникнути в них і інтерес до систематичного проведення групових позакласних занять.

Групові позакласні заняття з математики проводяться після уроків, але не по змісту, не по формі вони не схожі на заняття, які організовуються для відсталих учнів.

Ми виходимо з того, що головною метою групових занять на позаурочному часі являється посиленням інтересу дітей до математики. Молодші ж учні знаходяться в такому віці, коли їхні інтереси до того чи іншого навчального предмету не визначились, коли інтереси тільки формуються. Тому до позакласних занять з математики, так наприклад, як до позакласного читання, корисно привертати всіх учнів класу. Роботу цю необхідно розпочинати з 1 класу. Таким чином, групові позакласні заняття являє собою заняття, проведені вчителем після уроків з усіма учнями свого класу. Кожне з цих занять планується вчителем в відповідності до вимог збільшення інтересу дітей до математики з врахуванням маючих у дітей знань, вмінь і навиків. Послідовне ускладнення занять проводиться виходячи з накопичених в учнів знань з математики і вмінь виконувати вправи з цікавої математики (ребуси, шаради, задачі – жарти, загадки і т. д.).

В 1 класі позаурочні групові заняття з математики проводяться епізодично. В 2 і 3 класах ці заняття проводяться систематично, але не частіше 1-2 разів в місяць, так як до них потребується велика підготовка.

Тривалість групових позакласних занять з математики повинна бути з 1 класі – 20- 25 хвилин, в 2 – 25-35 хвилин, в 3 – 35-40 хвилин.

Позакласні заняття з математики можуть бути тематичними, але частіше всього проводяться комбіновані заняття, матеріал яких звичайно непов’язаний з темами останніх уроків з математики.

Підтриманню інтересу у дітей на протязі всього заняття сприяє його організації. Кожне позакласне заняття складається з 3 частин: вступної, основної, заключної.

В вступній частині діти відразу відчувають незвичайність цих занять, необхідність їх з уроками. Дітям пропонуються ребуси, задачі в віршах, або вчитель в ситуацію занять вводить героїв дитячих казок, від імені яких пропонуються різні завдання математичного характеру. В основну частину входять завдання, які вимагають більш напруженої розумової діяльності учнів, уваги і зосередженості. Діти вирішують різні математичні задачі, виконують логічні вправи, вирішують задачі – жарти. Основним змістом заключної частини заняття є загадки і математичні або логічні ігри. Корисно закінчувати заняття в той момент, коли діти готові з цікавістю повторити гру. Ці бажання, які збереглися служать зарядом інтересу до наступних позакласних занять, так як у молодших учнів інтерес до математики поки ще тісно переплітається з прагненням до ігрової діяльності. Тому закінчуючи гру, потрібно дітям сказати, що гру можна провести ще раз на наступному позакласному занятті.

При проведенні позакласних занять необхідно ретельно продумати використання наочності. З однієї сторони, наочність повинна бути цікавою, з другої – вона повинна сприяти на розумову діяльність дітей щодо розв’язання того чи іншого запитання, запам’ятовування деталей математичного або логічного завдання.

В процесі занять необхідно забезпечити диференційований підхід, враховуючи особливості окремих учнів, так як запропоновані на них запитання і завдання можуть бути направлені на виховання уваги, пам’яті на числа, розширити загальний кругозір, прищепити інтерес до розв’язання задач і т. д.