Смекни!
smekni.com

Позакласна робота з математики у молодших класах (стр. 8 из 11)

Математичні екскурсії плануються також, як і інші види позакласних заходів, так же, як і уроки. В плані передбачається:

1) підготовка до екскурсії, робота з дітьми (пояснення прийомів роботи, які будуть на екскурсії, вироблення дітьми первісних навиків);

2) виготовлення відповідних приладів;

3) розділення учнів на бригади, розподілення між ними приладів і вимірювальних інструментів;

4) пояснювальні бесіди, як потрібно себе вести під час походу на екскурсію і під час окремих видів роботи і відпочинку;

5) розподіл часу, який піде на кожний етап екскурсії;

6) виділення того матеріалу, який діти повинні записати в своїх зошитах;

7) обробка матеріалу після проведення екскурсіях.

Перед проведенням екскурсії вчитель сам повинен відвідати відповідні пункти, виділити роботу для кожного учня бригади, провести цю роботу, передбачивши всі елементи безпеки. Під час цього відвідування корисно урахувати час на рух до місця екскурсії і назад, намітити міста, зручні для відпочинку дітей.

2.6 Математичні вікторини, олімпіади, ранки.

Назва “вікторина” походить від латинського слова “віктория” – победа. Вікторина – це одна з форм організації змагання між командами, між окремими членами в області математики чи інших наук. Організація вікторин – одна із форм позакласної роботи з математики. Змагання в формі вікторини, дозволяє виділити кращого математика, кращий клас і проводиться наступним чином: пропонується система запитань, задач, прикладів, які доступні певній віковій групі учнів. Діти в добровільному порядку вирішують задачі, приклади, відповідають на запитання і в усній чи письмовій формі повідомляють результати. Пробірка якості результатів виконання завдань і відповідний облік дають основу відібрати кращого математика чи клас.

Організація вікторини вимагає не так уже багато часу. Цим вона приваблює вчителів. Вікторини проводяться в класі, де між собою змагаються окремі учні. Вікторини можуть проводитися і математичним гуртком, де виділяються кращі математики, в клубі юних математиків, де організовується змагання між командами паралельних класів.

Вікторини проводять з метою підвищення інтересу учнів до математики, для виявлення любителів математики з послідовним принадженням їх в математичні гуртки, де вони можуть проявити свої здібності.

Зміст і кількість завдань для вікторини залежить від того, в яких умовах і з яким складом учнів вона проводиться, якщо вікторина проводиться в класі чи клубі юних математиків і в усній формі, то включається 8-10 не важких запитань, завдань, які потребують тільки усних способів рішення, виконання. Серед них можуть бути запитання захоплюючого характеру. Ці запитання і завдання продумуються раніше. При проведенні вікторини перед учасниками в класі виступає в ролі ведучого учитель, а в клубі в ролі ведучого виступають два чоловіки ( два учнів старших класів або вчитель з помічником ). Ведучі по черзі задають учням запитання. Коли один із ведучих читає завдання, то другий слідкує за тим, хто із присутніх першим підняв руку для відповіді. Ведучі вислуховують рішення і роблять висновки про якість відповіді. Учень, який відповів одержує прапорець або зірочку, де вказаний номер запитання, за відповідь на який він отримав цей знак. Після одержання відповідей на всі запитання вікторини рахують очки, які одержали команди чи окремі учні, і відмічають переможців.

Частіше всього вікторина проводиться так, що на певний термін ( наприклад, тиждень ) пропонується декілька запитань, завдань по математиці (6-8). Ці запитання і завдання можуть бути представлені через стінну газету або оформлені на спеціальному плакаті з яскравим покликом до учнів. Діти протягом тижня виконують запропоновані завдання, відповідають на запитання, вирішують задачі і приклади, свої роботи в письмовому вигляді з указаним прізвищем і класом, в якому він навчається, кладуть в спеціальні конверти , прикріплені біля стінгазети чи плакату з вікториною. В цьому випадку ініціатором вікторини є або математичний гурток, або штаб клубу юних математиків.

У вікторині повинні бути запитання різної складності, щоб в ній могли брати участь більше учнів. Відповідь на кожне завдання, запитання вікторини повинен бути оцінений певною кількістю очок.

Вікторина для виявлення кращих математиків як форма змагання між паралельними класами іноді приводиться в три тури. Перші два тури являють собою звичайні контрольні роботи по математиці, однакові трудності для паралельних класів, результати яких звичайно порівнюються. Вони служать підготовкою до рішаю чого туру, на якому учасникам вікторини даються спочатку дві обов’язкові задачі. Ті, хто їх розв’язав, отримують третю задачу підвищеної складності. Після трьох турів підводяться підсумки.

Виходячи з цілей, з якими проводиться вікторина може включати:

А) завдання для повторення однієї певної теми;

Б) завдання для повторення основних розділів із всіх вивчених тем;

В) завдання, взяті з основних розділів вивчених тем, з включенням елементів зацікавленості.

Частіше всього вікторини носять оглядовий характер з елементами зацікавленості.

Вікторина – блискавка.

1. Назвіть три дні підряд, не називаючи днів тижня, чисел. (Відповідь: вчора, сьогодні, завтра ).

2. летіла стая гусей: два попереду, один позаду, два позаду, один попереду. Скільки було гусей?

3. горіло п’ять свічок, три потухло. Скільки залишилось свічок?

4. на гілці сиділо вісім горобців, потім прилетіло ще чотири, а полетіло шість. Скільки стало горобців?

5. скільки років Кості, якщо до його років ще додати вісім і ще один, то буде одинадцять років.

6. Як у кімнаті можна поставити два стільці, щоб біля кожної стіни стояло по одному стільці.

7. колоду завдовжки 5 м потрібно розпиляти на поліна завдовжки 1 м. Скільки треба зробити розрізів?

Шкільні математичні олімпіади являють собою більш масові змагання, так як вони охоплюють учнів не одного, а всіх паралельних класів школи.

Математичні олімпіади молодших школярів мають пропедевтичний характер. Основними рівнями олімпіад учнів початкових класів є класні та шкільні . міжшкільні чи районні проводяться за умов належної уваги працівників методичних кабінетів.

Вкажемо на істотні особливості і необхідні умови ефективності математичних олімпіад молодших школярів:

- масовість – кожному учню повинна бути надана можливість взяти у ній участь (масовість забезпечується шляхом організації і проведення класних олімпіад);

- опосередкована та безпосередня участь батьків у їх проведенні (реально це досягається, якщо протягом даного часу учням у порядку підготовки пропонується розв’язати вдома певну кількість “нестандартних” задач);

- повне забезпечення вчителя “задачним матеріалом” як до змісту завдань самої олімпіади, так і підготовчої роботи (реальний захід – видання відповідного друкованого посібника масовим тиражем).

Олімпіади в школі проводяться один раз в рік з метою збільшити інтерес дітей до математики, розширити їх кругозір, виявити найбільш здібних дітей, підвести підсумки роботи математичних гуртків або клуба юних математиків , збільшення рівня викладання математики в початкових класах.

Підготовка до класних олімпіад проводиться шляхом епізодичного розв’язування нестандартних задач на уроках математики та розв’язування відповідних задач учнями вдома.

Класні олімпіади проводяться на одному з уроків математики або у позаурочний час, тобто на п’ятому уроці (але після відпочинку учнів – 15-20 хв.).

Завдання класної олімпіади подаються двома варіантами. Задачі на перед записані на класних дошках. Ще краще, якщо вони будуть роздруковані на машинці чи ксерокопії для кожного учня.

Розв’язання задач учні записують на окремих листках учнівського зошита. Дозволяють користуватися чернетками. Час виконання 40-45 хвилин. Хто розвяже всі задачі, може подумати і над резервною задачею, записати її розв’язання.

При проведенні олімпіад завдання даються з різних розділів математики: арифметики, елементів алгебри та геометрії. Організатори олімпіади повинні використовувати всі доступні засоби, забезпечити повну самостійність учасників змагання під час виконання ними завдань . переможця визначають лише тоді, коли всі учасники змагання мають однакові умови. Однакові умови виражаються тим, що всім учасникам дають одні і ті завдання (не по варіантам) і забезпечені умовами для самостійного виконанням кожним власником цього завдання.

Під час виконання завдань треба в дітей підтримувати спокійно – діловий, але мажорний настрій. Вчитель і присутні мають бути тактовними, підтримувати учнів морально, а в окремих (деяким учням) подавати методичну допомогу.

Інтенсивну підготовку проводять за місяць до проведення олімпіади. Вдома та епізодично на уроках учні розв’язують задачі, варіативні задачі самої олімпіади та інші завдання.

Математичні ранки сприяють вихованню позитивних рис характеру учнів, збуджують прагнення більше знати. Математичний ранок у початкових класах – це свято, яке старанно готують і дорослі і діти. Підготовка ранку навчає і виховує у такій же мірі, як і сам ранок. Вдалий розподіл завдань і обов’язків відповідно до здібностей і інтересів учнів дасть їм можливість максимально проявити ініціативу і фантазію , сприятиме підвищенню ефективності математичного ранку.

У початковій школі бажано практикувати 5 математичних ранків: один у 2(1) класі і по два у 3(2) та 4(3) класах. У 2(1) класі ранок проводиться у другому півріччі навчального року, а у 3(2) і 4(3) – по одному у кожному півріччі.

Математичний ранок – свято, основу якого складають командні і парні змагання на математичному матеріалі даного класу. Новий і позапрограмований матеріал має бути , але у невеликому обсязі і в цікавій формі.

Зміст і форма математичних ранків може бути різна, але потрібно домагатися, щоб кожен учень був не тільки глядачем свята, а й активним його учасником. На математичному ранку мають працювати і сильні і слабкі учні. Свято повинно проходити весело, жваво.