Смекни!
smekni.com

Методика обучения школьников основам комбинаторики теории вероятностей и математической статистики (стр. 10 из 15)

После проведения экспериментов целесообразно ввести понятия эксперимента и его исхода. Четкое определение и разграничение при проведении реальных физических экспериментов таких понятий, как исход эксперимента и событие, возможное в эксперименте, в дальнейшем поможет избежать многих трудностей при введении понятия вероятности случайного события.


Занятие №4. Классическое определение вероятности.

Вероятность – одно из основных понятий теории вероятностей. Существует несколько определений этого понятия. Приведем определение, которое называют классическим. Далее укажем слабые стороны этого определения и приведем другие определения, позволяющие преодолеть недостатки классического определения.

Рассмотрим пример. Пусть в урне содержится 6 одинаковых, тщательно перемешанных шаров, причем 2 из них – красные, 3 – синие и 1 – белый. Очевидно, возможность вынуть наудачу из урны цветной шар больше, чем возможность извлечь белый шар. Можно ли охарактеризовать эту возможность числом? Оказывается, можно. Это число и называют вероятностью события. Таким образом, вероятность есть число, характеризующая степень возможности появления события.

Поставим перед собой задачу дать количественную оценку возможности того, что взяты наудачу шар цветной. Появление цветного шара будем рассматривать в качестве события А. Каждый из возможных результатов испытания (испытание состоит в извлечении шара из урны) назовем элементарным исходом (элементарным событием). Легко видеть, что эти исходы образуют полную группу попарно несовместных событий (обязательно появится только один шар) и они равновозможны (шар вынимают наудачу, шары одинаковые и тщательно перемешаны).

Те элементарные исходы, в которых интересующее нас событие наступает, назовем благоприятствующими этому событию.

Необходимо пояснить учащимся различие между событием и элементарным событием.

Отношение числа благоприятствующих событию А элементарных исходов к их общему числу, называют вероятностью события А и обозначают Р(А). В рассматриваемом примере всего элементарных исходов 6; из них 5 благоприятствуют событию А. Следовательно, вероятность того, что взятый шар окажется цветным, равна Р(А)=5/6.Это число и дает ту количественную оценку степени возможности появления цветного шара, которую мы хотели найти. Дадим теперь определение вероятности.

Вероятностью события А называют отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу.

, где m - число элементарных исходов, благоприятствующих А; n – число всех возможных элементарных исходов испытания.

Полезно формуле вероятности события придать наглядную иллюстрацию.

Из определения вероятности вытекают следующие ее свойства:

Свойство 1. Вероятность достоверного события равна единице.

Свойство 2. Вероятность невозможного события равна нулю.

Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Доказательства данных свойств могут быть предложены учащимся в качестве домашнего задания.

Задачи:

1. Для новогодней лотереи отпечатали 1500 билетов, из которых 120 выигрышных. Какова вероятность того, что купленный билет окажется выигрышным?

2. Для экзамена подготовили билеты с номерами от 1 до 25. какова вероятность того, что взятый наугад учеником билет имеет: 1) однозначный номер; 2) двузначный номер?

3. Ученик при подготовке к экзамену не успел выучить один из тех 25 билетов, которые будут предложены на экзамене. Какова вероятность того, что ученику достанется на экзамене выученный билет?

4. Женя купил 2 лотерейных билета, и один из них оказался выигрышным. Можно ли утверждать, что вероятность выигрыша в лотереи

?

5. Для школьного новогоднего вечера напечатали 125 пронумерованных пригласительных билетов, между которыми предполагается разыграть главный приз. Какова вероятность, что номер счастливчика будет оканчиваться: а) на тройку; б) на девятку? в) Вова получил пригласительный билет с номером 33, а Таня – 99. Верно ли, что у Вовы больше шансов получить главный приз?

6. Два друга живут в одном доме, а учатся в разных классах. Уроки в школе заканчиваются в интервале от 13 до 14 часов. После занятий они договариваются ждать друг друга на автобусной остановке в течение 20 минут. Сколько приблизительно раз за год им удаётся поехать домой вместе, если в году 200 учебных дней?

Занятие №5. Решение вероятностных задач с помощью формул комбинаторики.

При изучении этой темы надо, чтобы учащиеся отчетливо представляли себе роль сочетаний, размещений и перестановок в различных вероятностных задачах и научились по формулировкам задач определять, какой из видов соединений будет использован при решении той или иной задачи. Здесь можно руководствоваться следующим: если множество исходов составляют всевозможные комбинации из n элементов по k, то в задаче будут фигурировать сочетания; если же всевозможные комбинации из n элементов по n, то в задачах идет речь о перестановках; размещения будут тогда, когда речь идет о порядке элементов в рассматриваемых комбинациях.

Задачи:

1. Набирая номер телефона, абонент забыл последние две цифры и, помня лишь, что эти цифры различны, набрал их наудачу. Найти вероятность того, что набраны нужные цифры.

2. В классе 30 учащихся. Из них 12 мальчиков, остальные девочки. Известно, что к доске должны быть вызваны двое учащихся. Какова вероятность, что это девочки?

3. Набирая номер телефона, состоящий из 7 цифр, Антон забыл, в какой последовательности идут три последние цифры. Помня лишь, что это цифры 1, 5 и 9, он набрал первые 4 цифры, которые знал, и наугад комбинацию из цифр 1, 5 и 9. какова вероятность того, что Антон набрал верный номер?

4. В пачке находятся одинаковые по размеру 7 тетрадей в линейку и 5 в клетку. Из пачки наугад берут 3 тетради. Какова вероятность того, что все 3 тетради окажутся в клетку?

5. Четыре билета на ёлку распределили по жребию между 15 мальчиками и 12 девочками. Какова вероятность того, что билеты достанутся 2 мальчикам и 2 девочкам?

6. На полке 12 книг, из которых 4 – это учебники. С полки наугад снимают 6 книг. Какова вероятность того, что 3 из них окажутся учебниками?

Занятие №6. Статистическая вероятность.

Классическое определение не требует, чтобы испытание обязательно проводилось в действительности: теоретическим способом определяются все равновозможные и благоприятствующие событию исходы. Такое определение предполагает, что число элементарных исходов испытания конечно и выражается конкретным числом. Однако на практике – при изучении случайных явлений в естествознании, экономике, медицине, производстве – часто встречаются испытания, у которых число возможных исходов необозримо велико. А в ряде случаев до проведения реальных испытаний трудно или не возможно установить равновозможность исходов испытания. Поэтому, наряду с классическим, на практике используют и так называемое статистическое определение вероятности. Для знакомства с ним требуется ввести понятие относительной частоты.

Относительной частотой события A называют отношение числа испытаний m, в которых событие появилось, к общему числу фактически произведенных испытаний n.

Таким образом, вероятность вычисляют до опыта, а относительную частоту после опыта.

Длительные наблюдения показали, что если в одинаковых условиях производят опыты, в каждом из которых число испытаний достаточно велико, то относительная частота обнаруживает свойство устойчивости. Это свойство состоит в том, что в различных опытах относительная частота изменяется мало, колеблясь около некоторого постоянного числа.

Например, по данным шведской статистики, относительная частота рождения девочек в 1935 г по месяцам характеризуется следующими числами: 0,486; 0,489; 0,490;0,471;0,478;0,482;0,462;0,484;0,485;0,491;0,482;0,473. относительная частота колеблется около числа 0,482, которое можно принять за приближенное значение вероятности рождения девочек

Таким образом, в качестве статистической вероятности события принимают относительную частоту или число, близкое к ней.

Свойства вероятности, вытекающие из классического определения, сохраняются и при статистическом определении вероятности. Назовите их.

Задачи:

1. Во время тренировки в стрельбе по цели было сделано 30 выстрелов и зарегистрировано 26 попаданий. Какова относительная частота попадания по цели в данной серии выстрелов?

2. Отдел технического контроля обнаружил пять бракованных книг в партии из случайно отобранных 100 книг. Найти относительную частоту появления бракованных книг.