Смекни!
smekni.com

Методика обучения школьников основам комбинаторики теории вероятностей и математической статистики (стр. 15 из 15)

.

Для практических расчетов удобнее формула:

.

Дисперсия имеет размерность квадрата наблюдаемой величины, поэтому на практике широко используется еще один показатель рассеивания – среднее квадратичное отклонение sвыб(Х):

.

Важно помнить о принципиальном отличии числовых характеристик в статистике от числовых характеристик в теории вероятностей.

Задачи:

С62, С69, С87, С 93 С95 из пособия.

Занятие №3. Статистические исследования. Этапы статистического исследования.

Для изучения различных общественных и социально-экономических явлений, а также некоторых процессов, происходящих в природе, проводят специальные статистические исследования.

Всякое статистическое исследование начинается с целенаправленного сбора информации об изучаемом явлении или процессе. Этот этап называется этапом статистического наблюдения.

Для обобщения и систематизации данных, полученных в результате статистического наблюдения, их по какому-либо признаку разбивают на группы, и результаты группировки сводят в таблицы (таблицы частот, таблицы относительных частот). Таким образом, второй этап – группировка и сведение данных в таблицу.

Данные нужно представить более наглядно: либо с помощью столбчатой диаграммы, либо полигона частот, либо круговой диаграммы, либо гистограммы. Третий этап – наглядное представление данных.

Далее переходят к анализу данных, используя для этого различные обобщающие показатели (статистические характеристики: среднее значение, мода, медиана, размах, выборочная дисперсия, выборочное среднее квадратичное отклонение).

На основании цели проведения статистического исследования и анализа данных делается вывод.

Рассмотрим такой пример. Администрация школы решила проверить математическую подготовку одиннадцатиклассников. С этой целью был составлен тест, содержащий 6 заданий. Сделали выборочное обследование, выбрали 20 школьников, случайный отбор обеспечивает одинаковую вероятность попадания в выборку любого объекта генеральной совокупности. Получили следующие результаты такого выборочного обследования:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
4 2 0 6 2 3 4 3 3 0 1 5 2 6 4 3 3 2 3 1

На основании этого ряда трудно сделать какие-либо определённые выводы о том, как справились школьники с работой. Чтобы удобней было анализировать информацию, в подобных случаях данные ранжируют, располагая их в порядке возрастания. Ряд примет вид:

0011222233333344456

Каждая группа представляет определённый результат эксперимента:

· Не решено ни одной задачи;

· Решена 1 задача;

· Решены 2 задачи и так далее.

В нашем случае частота появления события «0 задач» – 2, относительная частота 2/20=10%. Собственная частота появления события «2 задачи» – 4, относительная частота 4/50=8% и так далее.

Составим таблицу:

Событие 0 1 2 3 4 5 6
Частота 2 4 4 6 3 1 1
% 10 8 8 14 6 2 2

С помощью ранжирования ряда, таблицы и графических иллюстраций, мы уже получили первоначальные сведения о закономерностях интересующего нас ряда данных. Если нужно знать наиболее типичный результат, то используют понятия медиана, мода, размах, выборочная дисперсия, выборочное среднее квадратичное отклонение.

Задание: Провести какое-либо статистическое исследование.

Занятие №4. Определение линий регрессии методом наименьших квадратов для двумерных выборок.

Занятие №5.

Заключение

Настоящее исследование посвящено решению актуальной проблемы теории и методики обучения математике – развитие пространственного мышления учащихся в процессе изучения геометрии. Основным средством для решения этой проблем был выбран компьютер, который позволил выделить новый вид учебной наглядности – компьютерная анимация, реализующаяся посредством пакета прикладных программ 3D Studio MAX.

В соответствии с поставленными целями перед данной выпускной квалификационной работой и результатами, полученными в ходе исследования, можно сделать следующие выводы:

Анализ научно-методической литературы, посвященной вопросам формирования и развития пространственных представлений, позволил выделить основные психические и физиологические основы восприятия человеком объектов окружающего мира. В результате была выработана общая схема восприятия, которая легла в основу разработанной методики формирования пространственных представлений.

Была выявлена возможность применения компьютерной анимации в процессе формирования пространственных представлений. Компьютерная анимация заполнила некоторый пробел в процессе формирования пространственного образа геометрического объекта, она позволила осуществить плавный переход от натуральной вещественной модели к условно-графическому изображению – чертежу, что в значительной степени повышает уровень объективности пространственных представлений обучаемого.

Была разработана соответствующая методика формирования пространственного образа геометрического объекта при помощи компьютерной анимации. По результатам опытной работы можно сделать вывод о положительном влиянии разработанной методики на формирование пространственных представлений учащихся. Систематизация результатов научно-методических исследований позволила выявить условия формирования пространственных представлений обучаемых: использование различных видов деятельности, в первую очередь деятельности по решению специально подобранных упражнений, ориентированных на развитие пространственных представлений обучаемых; взаимосвязь формирования пространственных представлений с развитием логического мышления и речи учащихся; использование рациональной системы средств наглядности. Как показала практика преподавания, учет и использование этих условий и приемов успешно способствует работе по развитию пространственных представлений обучаемых. Опытная работа по применению разработанной методики показала ее эффективность. Опытная работа доказала, что целенаправленное и рациональное внедрение в практику новой учебной наглядности - компьютерной анимации ведет к повышению уровня развития пространственных представлений учащихся.

Сделанные выводы дают основание полагать, что справедливость гипотезы исследования экспериментально подтверждена, все поставленные задачи исследования решены.

Библиографический список

Сборники нормативных документов

1. Сборник нормативных документов. Математика [Текст] / сост. Э.Д.Днепров, А.Г. Аркадьев. – М.: Дрофа, 2006. – 80 с.

2. Концепция развития школьного математического образования [Текст] // Математика в школе. – 1990. – № 1. – С. 2 – 14.

3. Стандарт.

Учебники для вузов и техникумов с этими разделами

4. Кремер, Н.Ш. Теория вероятностей и математическая статистика [Текст]: учебник для вузов / Н.Ш. Кремер. – М.: ЮНИТИ-ДАНА, 2002. – 543 с.

5. Курс высшей математики для гуманитарных специальностей [Текст]: учебное пособие / под ред. Ю.Д.Максимова. – СПб.: Специальная литература, 1999. – 191 с.

6. Воронов,М.В. Математика для студентов гуманитарных факультетов [Текст] / М.В. Воронов, Г.П. Мещерякова. – Ростов-на-Дону: Феникс, 2002. – 384 с.

7. Солодовников, А.С. Теория вероятностей [Текст] / А.С. Солодовников. – М.: Просвещение, 1978. – 192 с.

8. Баврин, И.И. Курс высшей математики [Текст] / И.И. Баврин. – М.: Просвещение, 1992. – 400 с.

9. Гмурман, В. Е. Теория вероятностей и математическая статистика [Текст]: учебное пособие / В.Е. Гмурман. – М.: Высшее образование, 2006. – 479 с.

10. Гмурман, В.Е. Руководство к решению задач по теории вероятностей и математической статистике [Текст]: учебное пособие / В. Е. Гмурман. – М.: Высшая школа, 1999. – 400 с.

11. Вентцель, Е.С. Теория вероятностей [Текст] / Е.С. Вентцель. – М.: Высшая школа, 2001. – 575 с.

12. Калинина, В. Н. Математическая статистика [Текст]: учебник для студ. сред. спец. учеб. заведений / В.Н. Калинина, В.Ф. Панкин. – М.: Дрофа, 2002. – 336 с.

Научная и научно-популярная литература

13. Виленкин Н. Я. Комбинаторика [Текст] / Н. Я. Виленкин А.Н. Виленкин, П.А. Виленкин. – М.: ФИМА, МЦНМО, 2006. – 400 с.

14. Китайгородский, А.И. Невероятно – не факт [Текст] / А.И.Китайгородский. – М.: Молодая гвардия, 1972. – 256 с.

15. Хургин, Я.И. Как объять необъятное [Текст] / Я.И. Хургин. – М.: Знание, 1992. – 192 с.

16. Виленкин, Н. Я. Популярная комбинаторика [Текст] / Н.Я. Виленкин. – М.: Наука, 1975. – 208 с.

Методическая литература и пособия для учащихся

17. Глеман, М. Вероятность в играх и развлечениях. Элементы теории вероятностей в курсе сред. школы [Текст]: пособие для учителя / М. Глеман, Т. Варга; пер. с фр. – М.: Просвещение, 1979. – 176 с.

18. Шихова, А. П. Обучение комбинаторике и ее приложениям в средней школе [Текст] / А. П. Шихова. – Киров: ИУУ, 1994 – 63 с.

19. Афанасьев, В.В. Школьникам о вероятности в играх. Введение в теорию вероятностей для учащихся 8-11 классов [Текст] / В.В.Афанасьев, М.А.Суворова. – Ярославль: Академия развития, 2006. – 192 с.

20. Предпрофильная подготовка учащихся 9 классов по математике. Общие положения, структура портфолио, программы курсов, сценарии занятий [Текст] / И.Н.Данкова, Т.Е.Бондаренко, Л.Л. Емелина, О.К. Плетнева. – М.: 5 за знания, 2006. – 128 с.

21. Бунимович, Е.А. Вероятность и статистика. 5-9 кл. [Текст]: пособие для общеобразоват. учеб. заведений / Е.А. Бунимович, В.А. Булычев. – М.: Дрофа, 2002. – 160 с.

22. Сборник задач по математике для факультативных занятий в 9-10 классах [Текст] / под ред. З. А. Скопеца. – М.: Просвещение, 1971. – 208 с.