Смекни!
smekni.com

Методика обучения школьников основам комбинаторики теории вероятностей и математической статистики (стр. 9 из 15)

А Вода в реке замерзла при температуре +25°С +
В Появление слова «мама» при случайном наборе букв м, м, а, а -
С Появление сразу трёх лайнеров над аэропортом +
D Составление трёхзначного числа, состоящего из цифр 1,2,3 и кратного 5 +
E Появление 17 очков при бросании трёх игральных костей -

Упражнения:

Для каждого из этих событий определить, каким оно является: невозможным, достоверным или случайным.

1. Из 26 учащихся класса двое справляют свой день рождения: 1) 25 января; 2) 31 июня.

2. Случайным образом открывается художественное произведение и находится второе слово на левой странице. Это слово начинается: 1) с буквы М; 2) с буквы Ъ.

3. Из списка журнала 9 класса (в котором есть и мальчики, и девочки) случайным образом выбран ученик: 1) это мальчик; 2) выбран ученик, которому 15 лет; 3) выбранному ученику 15 месяцев; 4) этому ученику больше двух лет.

4. Сегодня в Кирове барометр показывает нормальное атмосферное давление. При этом: 1) вода в кастрюле закипит при температуре 70°С; 2) когда температура упала до -3°С, вода в луже замёрзла.

5. В нашей школе учатся 758 учеников. Событие А={в школе есть ученики с совпадающими днями рождения} является случайным или достоверным. Выясните, произошло ли это событие в вашем классе?

6. Среди 150 билетов школьной благотворительной лотереи 30 выигрышных. Сколько билетов надо купить, чтобы событие А={вы ничего не выиграете} было невозможным?

7. В 10 «Г» классе учится 16 мальчиков и 10 девочек. Какие из следующих событий являются невозможными, какие случайными, какие – достоверными:

А={ в классе есть два человека, родившихся в разные месяцы};

В={в классе есть два человека, родившихся в одном месяце};

С={в классе есть два мальчика, родившихся в одном месяце};

D={в классе есть две девочки, родившиеся в одном месяце};

Е={все мальчики родились в разные месяцы};

F={все девочки родились в разные месяцы};

К={есть мальчик и девочка, родившиеся в одном месяце};

М={ есть мальчик и девочка, родившиеся в разные месяцы}.

8. Около школы останавливаются автобусы трёх маршрутов, идущих в сторону лесозавода: № 5, № 13 и № 23. Интервал в движении автобусов каждого маршрута колеблется от 8 до 10 минут. Когда Саша, Маша, Кристина и Катя подошли к остановке, от неё отошёл автобус № 13, а ещё через 6 минут подошёл автобус № 5. После этого каждый из ребят высказал своё мнение о том, автобус какого маршрута будет следующим:

Саша: Следующим обязательно будет № 23.

Маша: Возможно, что следующим будет № 23.

Кристина: Возможно, что следующим будет № 13.

Катя: Невозможно, что следующим будет № 5.

С кем из ребят вы согласны, а с кем нет? Объясните сделанный выбор.

9. На дорогу от дома до школы Миша тратит от 10 до 15 минут, если идёт пешком, и от 2 до 3 минут, если едет на автобусе. При каких интервалах движения автобусов событие А=={по пути в школу Мишу обгонит хотя бы один автобус} будет невозможным, при каких – случайным, при каких – достоверным?

После знакомства с понятием «случайное событие» учащиеся должны уметь приводить примеры таких событий из жизни и отличать их от неслучайных.

Занятие №2. Виды случайных событий.

События называют несовместными, если появление одного из них исключает появление других событий в одном и том же испытании. В противном случае события называются совместными.

Например, события «пошел дождь» и «наступило утро» являются совместными, а события «наступило утро» и «наступила ночь» - несовместными.

Задачи:

1. В сыгранной Катей и Ларисой партии в шахматы определить совместные и несовместные события, если: 1) Катя выиграла, Лариса проиграла; 2) Катя проиграла, Лариса проиграла.

2. Из событий: 1) «идёт дождь»; 2) «на небе нет ни облака»; 3) «наступило лето» - составить всевозможные пары и выявить среди них пары совместных и пары несовместных событий.

3. Из событий: 1) «наступило утро»; 2) «сегодня по расписанию 6 уроков»; 3) «сегодня 1 января»; 4) «температура воздуха в Мариинске +30°С» - составить всевозможные пары и выявить среди них пары совместных и пары несовместных событий.

События называют равновозможными, если есть основания считать, что ни одно из них не является более возможным, чем другое.

Например, «выпадение герба» и «выпадение цифры» при бросании монеты – равновозможные события. «Изъятие из набора домино дубля» и «изъятие из набора домино костяшки с разными очками» - неравновозможные события, так как дублей в наборе домино всего 7, а остальных костяшек 21.

Несколько событий образуют полную группу, если в результате испытания появится хотя бы одно из них.

Например, попадание и промах при выстреле; появление 1, 2, 3, 4, 5, 6 очков при бросании игральной кости.

Если два единственно возможных события образуют полную группу, то их называют противоположными (выигрыш и не выигрыш, попадание и промах). Если одно из двух противоположных событий обозначено через А, то другое принято обозначать

.

Задачи:

1. Ниже перечислены разные события. Укажите противоположные им события.

а) Мою новую соседку по парте зовут или Таня, или Аня.

б) Из пяти выстрелов в цель попали хотя бы два.

в) На контрольной работе я не решил, как минимум, три задачи из пяти.

2. Назовите событие, для которого противоположным является такое событие:

а) на контрольной работе больше половины класса получили пятёрки;

б) все семь пулек в тире у меня попали мимо цели;

в) в нашем классе все умные и красивые;

г) в кошельке у меня есть три рубля одной монетой, или три доллара одной бумажкой.

Рассматривая события как множества, можно определить действия над событиями. (Введение понятий суммы и произведения событий позволяет подготовить действия над вероятностями).

a) Объединение событий или сумма событий - AÈB или А+В - событие, содержащее все элементы А и В.

Пример 1.

Испытание: бросаем игральную кость.

Событие А: выпало четное число очков.

Событие B: выпало число очков меньше, чем 4.

Событие A+B: выпало 1, 2, 3, 4 или 6 очков.

Пример 2.

Событие А: круг.

Событие B: квадрат.

Событие A+B: заштриховано.

b) Пересечение событий или произведение событий - AÇB или АВ - событие, содержащее только общие элементы А и В.

Пример 3.

Испытание: бросаем игральную кость.

Событие А: выпало четное число очков.

Событие B: выпало число очков меньше, чем 4.

Событие AB: выпало 2 очка.

Пример 4.

Событие А: круг.

Событие B: квадрат.

Событие AB: заштриховано.

Какими являются события C, D, E?

Задачи:

1. Событие А – «попадание в мишень первым выстрелом», событие В – «попадание в мишень вторым выстрелом». В чем состоит событие А+В?

2. Событие А – «ученик учится без троек», событие В – «ученик учится без двоек», событие С – «ученик не отличник». Сформулируйте: А+В+С.

3. Событие А – «лотерейный выигрыш 10 руб.», событие В – «лотерейный выигрыш 20 руб.», событие С – «лотерейный выигрыш 30 руб.», событие D – «лотерейный выигрыш 40 руб.». В чем состоит событие А+В+С+D?

4. Событие А – «появление нечетного числа очков при бросании игральной кости», событие В – «появление 3 очков при бросании игральной кости», событие С – «появление 5 очков при бросании игральной кости». В чем состоят события АВС, АВ, АС, ВС?

5. Проводятся две лотереи. Если событие А1 – «выигрыш по билету первой лотереи» и событие А2 – «выигрыш по билету второй лотереи», то что означают события: А1А2+

А2, А1
+
А21А2?

6. Известно, что события А и В произошли, а событие С не наступило. Определите, наступили ли следующие события: А+ВС, (А+В)С, АВ+С, АВС.

7. Турист из пункта А в пункт В может попасть двумя дорогами. обозначим события: А1 – «он пошел первой дорогой», А2 – «он пошел второй дорогой».

Из пункта В в пункт С ведут три дороги. Обозначим события: В1 – «он пошел первой дорогой», В2 – «он пошел второй дорогой», В3 – «он пошел третьей дорогой».

Применяя понятия суммы и произведения, а также противоположного события, постройте события, состоящие в том, что:

- от А до В он выбрал дорогу наугад, а от В до С пошел третьей дорогой;

- от А до В он пошел первой дорогой, а от В до С – дорогой, выбранной наугад;

- от А до В он пошел не первой дорогой, а от В до С – не третьей;

- он дошел от А до С.

Занятие №3. Эксперименты и их исходы.

Первый шаг на пути ознакомления учащихся с понятием вероятность состоит в длительном экспериментировании, то есть в многочисленных манипуляциях с разнородными предметами (игральными костями, волчками, монетами, шарами и прочими).

Для проведения экспериментов учащихся лучше разбить на группы по 2-3 человека, один из которых будет фиксировать результаты эксперимента, а остальные проводить его.

Могут быть предложены следующие задания-эксперименты:

Задание №1. 100 раз подбросить монету и зафиксировать количество выпадений «орла» и «решки».

Задание №2. 100 раз подбросить кнопку и зафиксировать количество раз, когда кнопка упала острием вниз и количество раз, когда кнопка упала острием вверх.

Задание №3. Выберите какой-нибудь текст, содержащий 150 слов. Подсчитайте число слов, составленных из 6 букв.

Задание №4. Выберите 7 строк произвольного текста. Подсчитайте, сколько раз встречаются в тексте буквы о, е, а, ю.

Задание №5. 100 раз подбросить игральную кость и зафиксировать количество выпадений 6.