Смекни!
smekni.com

Элективный курс по математике для классов спортивно-оборонного профиля (стр. 2 из 8)

Также при большом количестве повторений испытания частость событий мало изменяется и стабилизируется около определенного значения, а при не большом количестве повторений она может принимать различные значения. Поэтому интуитивно ясно, что при большом количестве повторений испытания частость события будет стремиться к определенному числовому значению. Такое значение принято называть вероятностью события А и обозначают Р(А).

В математике неограниченное число поворений принято записывать в виде предела при N стремящегося к бесконечности:

Так как n всегда больше либо равно N, то вероятность заключена в интервале:

.

В некоторых случая вероятности событий могут быть легко определены исходя из условий испытаний. Пусть испытание имеет n возможных исходов, то есть событий, которые могут появиться в результате данного испытания. При каждом повторении возможно появление только одного из данных исходов (то есть все n исходов несовместны). Кроме того по условиям испытания нельзя сказать какие исходы появляются чаще других, то есть все исходы являются равновозможными. Допустим теперь что при n равновозможных исходах интерес представляет событие А, которое появляется только при m исходах и не появляется при остальных n-m исходах. И принято говорить, что в данном испытании имеется n случае, из которых m благоприятствуют появлению события А.

В таком случае вероятность можно вычислить, как отношение числа случаев благоприятствующих появлению события А (т.е. m), к общему числу всех исходов n:

.

Данная формула представляет собой определение вероятности по Лапласу, которое пришло из области азартных игр, где теория вероятности применялась для определения перспективы выигрыша.

1.3 Основные формулы комбинаторики

Для того чтобы определить вероятность нужно знать количество исходов, а также количество благоприятных исходов. Если количество испытаний мало, то можно вручную перебрать все исходы и выявить среди них благоприятные. Что делать в том случае, если количество испытаний велико?

В таком случае приходят на помощь следующие формулы.

Теорема о перемножении шансов:

Пусть имеется, k групп элементов, причем каждая группа элементов содержит определенное количество элементов, например 1-ая содержит n1 элемент, 2-ая группа n2 элементов, тогда i-я группа содержит ni элементов. Тогда общее число N способов, которыми можно произвести такой выбор, равняется

Данную формулу можно применить к решению следующей задачи: Сколько существует пятизначных натуральных чисел.

Решение: Как известно всего 10 цифр. Представим пятизначное число, как *****, где вместо первой звездочки можно подставить все цифры кроме 0, так как если подставим 0, то получим четырехзначное число (нам надо пятизначное). Вместо второй звездочки можно подставить 10 цифр, аналогично вместо оставшихся можно подставлять любую из 10 цифр. Таким образом, у нас имеется 5 групп элементов, первая группа содержит 9 элементов, а оставшиеся 4 группы содержать по 10 элементов. Тогда используя формулу найдем количество пятизначных чисел:

Теорема: о выборе, с учетом порядка

Общее количество выбора k элементов из n элементов с учетом порядка определяется формулой:

и называется числом размещений из n элементов по k элементов.

Решим задачу: В областных соревнованиях по футболу участвует 8 команд. Требуется определить сколькими способами можно составить группу, состоящую их 4 команд.

Другими словами нам нужно выбрать 4 футбольных команды из 8 команд, т.е:

Теорема: выбор без учета порядка

Общее количество выборок в схеме выбора k элементов из n без возвращения и без учета порядка определяется формулой

и называется числом сочетаний из n элементов по k элементов.

1.4 Основные правила вычисления вероятностей

Приведем основные правила, позволяющие определить вероятность появления сложного события, состоящего из более простых событий, вероятность которых нам известна.

1.Вероятность достоверного события равна единице:

P(E)=1.

2. Вероятность суммы несовместных событий равна сумме их вероятностей.

Р(А1+ А2+…+ Аn)=Р(А1)+ Р(А2)+…+ Р(Аn).

Эти два равенства являются аксиомами, то есть не требуют доказательства. На основе этих равенств строится вся теория вероятностей. Приведенные ниже формулы можно вывести при помощи этих аксиом.

3. Вероятность невозможного события равна 0:

P(Ø)=0.

4.Вероятность противоположного события равна:

Р(Ā)=1-Р(А)

5.Вероятность объединения произвольных событий равна сумме их вероятностей без вероятности произведения событий

Р(А+В)=Р(А)+Р(В)-Р(АВ).

В общем случае данная формулы выглядит так:

.

Определение. Событие А В называются независимыми, если Р(АВ)=Р(А)Р(В).

На практике часто путают независимые и несовместные события, это разные понятия. Другими словами можно сказать, если события связаны независимыми экспериментами, то и сами события будут независимыми.

Решение задач

Пример 1. Применим теперь полученные знания для решения задач

Монету бросают два раза. Найти вероятность того, что хотя бы один раз появится герб.

Решение. Для начала переберем все возможные исходы: ГГ, ГЦ, ЦГ, ЦЦ. Здесь, например ЦГ означает, что при первом бросании появилась цифра, а при втором – герб. Других исходов не существует. Следовательно получаем, что n=4 (количество исходов) . Найдем теперь благоприятные исходы: герб появляется в следующих случаях ГГ, ГЦ, ЦГ, то есть m=4. Таким образом:

.

Пример 2.

Какова вероятность того, что из шести отмеченных чисел в карточке «Спортлото» (игра из 49) k чисел будут выигрышными.

Решение. Пусть событие А – среди отмеченных чисел к чисел выигрышные. Эксперимент состоит в том, что случайным образом отмечаются 6 чисел из 49. Поэтому равновозможными событиями будут наборы из шести отмеченных чисел. Так как для определения произойдет или не произойдет событие А порядок чисел не существенен, то в качестве равновозможных событий можно рассматривать наборы 6 чисел из 49. Следовательно общее число исходов будет определяться как

. Событие А состоит из наборов 6 чисел среди которых к – выигрышные, а 6-к проигрышные. Набор из к выигрышных чисел можно выбрать
способами, а набор 6-k проигрышных чисел (мы выбираем уже из 49-6=43 билетов), можно выбрать
способами. Тогда набор из k выигрышных и 6-k проигрышных чисел можно выбрать
способами, следовательно вероятность равна:

.

Пример 3. Три стрелка сделали по одному выстрелу по мишени. Вероятность попадания в мишень для одного из стрелков равна 0,6, для другого 0,7, для третьего 0,93. Найти вероятность того, что: а) хотя бы один из стрелков попадет в мишень; б) только один из стрелков попадет в мишень; в) ни один из стрелков не попадет в мишень.

Решение. Пусть событие А - первый стрелок попал в мишень, тогда P(A)=0,6;

Событие В - второй стрелок попал в мишень, тогда Р(В)=0,7;

Событие С – третий стрелок попал в мишень, тогда Р(С)=0,93 .

В данной задаче все события являются независимые, так как стреляют, не зависимо друг от друга.

а) Пусть событие S – хотя бы один из стрелков попадет в мишень. Вспомним определение суммы событий: Событие С называется суммой А+В, которое представляет собой событие, состоящее из появлении хотя бы одного из событий А и В.

Данное определение можно применить и к большему числу событий. Следовательно событие S=А+В+С. ТО есть нам нужно найти Р(А+В+С). А так как все события независимые, то применяя формулу суммы и произведения независимых событий получаем:

Р(А+В+С)=Р(А)+Р(В)+Р(С)-Р(АВ)-Р(АС)-Р(ВС)+Р(АВС)=0,99.

б)Пусть событие S – только один из стрелков попадет в мишень. Данное событие можно представить как сумму следующих событий:

. Рассмотрим подробно событие
, но для начала вспомним определение произведения событий: Событие C называется произведением A и B, если оно состоит из всех событий, входящих и в A, и в B. Итак событие
значит, что первый игрок попадет а два других промажут, аналогично рассматриваются два других слагаемых. Данные слагаемые является несовместным, так как появление одного из них исключает появление двух других. Значит можно применить формулу суммы несовместных событий, а затем формулу произведения независимых событий: