Смекни!
smekni.com

Элективный курс по математике для классов спортивно-оборонного профиля (стр. 6 из 8)

.

Задачи для самостоятельного решения

3.1

Вероятность поражения мишени при одном выстреле 0,8. Найти вероятность того, что при 100 выстрелах мишень будет поражена 75 раз.

3.2

Линия связи, имеющая к каналов связывает два города, где n абонентов, каждый из которых пользуется телефоном в среднем 5 минут в час. Найти вероятность безотказного обслуживания абонентов.

3.3

В лотерее 40000 билетов, ценные выигрыши попадают на 3 билета. Определить: а) вероятность получения хотя бы одного выигрыша на 1000 билетов; б) сколько необходимо приобрести билетов, чтобы вероятность выигрыша была не менее 0,5.

3.4

Найти математическое ожидание дискретной случайно величины Х заданной законом распределения:

А)

Х -4 6 10
P 0,2 0,3 0,5

Б)

Х 0,21 0,54 0,61
p 0,1 0,5 0,4

3.5

Дискретная случайная величина Х принимает три возможных значения

Х 4 6 х
p 0,5 0,3 р

Найти х и р, если М(Х)=8

3.6

Дискретная случайная величина имеет только 2 возможных значения х и у, причем x<y. Вероятность того что Х примет значение х 0,6. Найти закон распределения величины Х, если математическое ожидание и дисперсия известны: М(Х)=1,4, D(X)=0.24.


II Статистика.

Определение: Простой гипотезой будем называть любое предположение, однозначно определяющее распределение выборки Х.

Пусть даны r распределителей P1, …, Pr и пусть нам известно что Х есть выборка одного из этих распределений. Задача состоит в том, чтобы определить, к какому именно Р относится Х.

Определение: Нулевой называют выдвинутую гипотезу.

1.Проверка гипотезы о разности двух средних значений

Проверка гипотезы о разности между двумя средними арифметическими – одна из наиболее часто встречающихся задач исследовательской работы.

Рассмотрим следующий пример: Две группы велосипедистов использовали в соревновательном периоде два различных метода силовой подготовки. Первая группа весь объем силовых упражнений распределила на весь сезон. Вторая группа тот же объем использовала во второй половине сезона, а в первой совсем не применяла силовых упражнений. Эффективность методов тренировки оценивалась по приросту результатов на дистанции 500 м с места, которые оказались следующими (в секундах):

Первая группа1): 1,0; 2,1; 1,2; 1,9; 0,9; 0,8; 2,0; 0,8; 1,5; 2,0.

Вторая группа2): 0,8; 1,0; 1,3; 0,7; 0,7; 0,4; 0,9; 1,4; 1,5; 1,5.

Рассчитаем средние арифметические для каждой группы:

Таким образом, средний прирост спортивного результата в первой группе на 0,4 сек. Выше, чем во второй. Следует отметить, что по исходным данным группы были однородны. Очевидно, разность между средними арифметическими не говорит о том, что один метод тренировки эффективнее, чем другой. Даже если бы обе группы использовали одинаковые методы тренировки, средние арифметические почти наверняка были бы разными, так как прирост результатов зависти не только от методов тренировки, но и определяется некоторыми другими факторами, например, питанием спортсменов, занятостью в учебе или работе, болезнями и т.п. При не большом числе испытуемых эти факторы могли бы сложится более благоприятно, для какой то одной группы. Следовательно, задача состоит в том, чтобы установить, можно ли объяснить различие в среднем приросте результата случайностью или оно отражает тот факт, что один метод тренировки эффективнее, чем другой.

На языке математической статистики эта задача формулируется следующим образом. Прирост результатов для испытуемых первой группы рассматривается как случайная выборка из генеральной совокупности с параметрами

и
. Аналогично для второй группы существует генеральная совокупность с параметрами
и
. Требуется проверить нулевую гипотезу о том, что
=
. В математической статистике доказывается, что

,

где

.

Если величина t окажется слишком большой, то нулевая гипотеза должна быть отвергнута, как малоправдоподобная. В этом случае надо взять альтернативную гипотезу Н1:

Составим порядок применения t-критерия для проверки гипотезы о разности между двумя генеральными средними:

1. Проверить гипотезу о нормальности распределения наблюдений в каждой группе.

2. Рассчитать для каждой группы

3. Проверить гипотезу

.

4. Рассчитать стандартную ошибку разности между средними арифметическими.

5. Рассчитать величину критерия t. Сравнить полученное значение с граничным при выбранном уровне значимости и степеней свободы.

6. если нулевая гипотеза отвергнута, то построить доверительный интервал для разности между генеральными средними.

Пример. Применим t-критерий для проверки гипотезы H0:

=
, к данным примера приведенного в начале параграфа.

1. проверить гипотезу о нормальности распределения можно позже, когда будут описаны соответствующие критерии.

2.

3.

. Граничное значение при 5 процентном уровне значимости и числе степеней свободы для большей дисперсии f1=9 и меньшей f2=9 равно 4,03. Так как полученное значение критерия меньше граничного, то нулевая гипотеза не отвергается, то есть выборки взяты из генеральных совокупностей с равными дисперсиями.

4. Так как число наблюдений в группах равное, то стандартная ошибка разности равна:

5.

Число степеней свободы в данном примере f=10+10-2=18. Граничное значение при 5-процентном уровне значимости и 18 степенях свободы равно 2,01. Так как полученное значение критерия t меньше граничного, гипотеза о равенстве генеральных средних не отвергается. Таким образом не смотря на то, что средний результат средних приростов в двух группах различный, нет оснований говорить, что один из методов лучше, чем другой. Полученное различие может быть объяснено случайностью.

2 Посторенние линии регрессии для корреляции

Во многих задачах требуется установить и оценить зависимость изучаемой случайной величины У от одной или нескольких других величин. Так например может интересовать зависимость между спортивным результатом конькобежца и его аэробными возможностями, зависимость между силой мышц и скоростью их сокращения.

В некоторых случаях можно установить функциональную зависимость. При исследованиях в области спорта чаще всего приходится сталкиваться с корреляционной зависимостью, при которой каждому значению зависимой переменной соответствует ряд распределения зависимой переменной, и с изменением первой положение этих рядов закономерно изменяется.

Корреляционные зависимости могут быть представлены, как и в табличной форме так и в виде графической зависимости. Для этого каждой клетке корреляционной таблицы нужно равномерно распределить соответствующие указанной цифре число точек. Для построения первичного поля корреляции в обычной системе координат наносятся точки с координатами (Х;У) в соответствии с исходными данными.

В исследовательской работе корреляционные величины встречаются очень часто. Обычно величина У зависит от большого количества аргументов: Х1; Х2; …; Хm. В случае линейной функции эту зависимотсть можно записать в виде:

У=а+b1X1+b2X2+…+bmXm.

Например, результат конькобежца определяется не только аэробными возможностями организма, но также силой и скоростью сокращения мышц, техникой бега, волевыми качествами и т.д. Если анализировать все аргументы, то получится функциональная зависимость.

При изучении корреляционных зависимостей между двумя признаками обычно решаются следующие задачи:

1. Установление формы связи между функцией У и аргументом Х, то есть описание закона изменения величины условных средних

в связи с изменением Х. Эта задача решается путем нахождения уравнения регрессии.

2. Оценка тесноты связи между У и Х. Решение этой задачи требует ответов на два вопроса: