Например, при изучении темы «интеграл» содержание лекций будет таким: первообразная и неопределенный интеграл, вычисление первообразной по определению – на первом уроке лекции и определенный интегралё вычисление площадей с помощью определенного интеграла, формула Ньютона-Лейбница – на втором. В начале второго урока-лекции проводиться диагностирующий тест.
Тест знаний учащихся по теме: Первообразная и неопределённый
интеграл
1. Будет ли F(x) первообразной для функции f(x) на указанном промежутке:
, , (- ; + ).а) да б) нет в) зависит от ситуации
2. Сопоставьте функцию и её первообразную:
f(x) | F(x) |
1) | а) 3x3 |
2) 0 | б) - cosx |
3) cos5x | в) |
4) sinx | г) 4x + + 5 |
5) 9x2 | д) sin5x |
6) 4 + x | е) c |
1) - 4) -
2) - 5) -
3) - 6) -
3. Процесс отыскания функции по заданной производной называется:
а) дифференцированием;
б) интегрированием;
в) отысканием экстремума.
4. Верно ли рассуждение? Если да, то укажите правило, которым вы пользуетесь. Если нет, то укажите, в чём ошибка.
Найдём первообразную функции y=2xcosx. Первообразная для 2x – x2, для cosx– sinx. Значит первообразной для функции y=2xcosx будет служить функция y=x2sinx.
а) Да, используем правило___________________________________________
б) Нет, т.к._______________________________________________________________
5. Найдите первообразную для функции y=(4 – 5x)7
a)
;b)
;c)
;d)
;e) 7(4-5x)6;
f)-5∙7(4 -5x)6;
6. Продолжите фразу: первообразная суммы равна
а) сумме первообразных;
б) первообразной первой функции, умноженной на вторую функцию, плюс первообразная второй функции, в) умноженная на первую.
г) у этой фразы нет продолжения.
7. Заполните пропуски.
Если функция у=f(x) имеет на промежутке Х первообразную y=F(x), то___________________________________________________________________________________________________ называют неопределённым интегралом от функции y=f(x) и обозначают_______________.
Учащиеся написавшие данный тест плохо приходят на консультацию после уроков, остальные продолжают обучение по схеме1.
Затем проводится занятие, на котором выделяются ключевые задачи изучаемой темы (данные задачи ученики разбирают вместе с учителем). Например: тема: «интеграл», ключевые задачи это: вычисление неопределённых интегралов, вычисление определённых интегралов, вычисление площадей плоских фигур с помощью опр. интеграла. В начале данного урока проводится диагностирующий тест (см. приложение Тест знаний учащихся по теме «определённый интеграл»). Учащиеся, не справившиеся с тестом приходят на внеурочную консультацию, остальные продолжают обучение по схеме1.
До блока практических занятий проводится урок-зачет, на котором проверяются и закрепляются теоретические знания учеников. Основная цель урока-зачета заключается в том, чтобы выяснить, соответствуют ли знания и умения каждого школьника по изученной теме уровню обязательных результатов для продолжения занятий. Обычно учителя перед проведением таких уроков заранее сообщают круг теоретических вопросов, выносимых на зачет, что позволяет ученикам ответственно подготовиться к уроку.
На практике используются различные формы зачета: учащиеся отчитываются о проделанной работе перед учителем; ученики контролируют друг друга (взаимозачет); зачет группы учащихся принимает консультант, назначенный учителем из числа специально подготовленных учеников. Сдающие зачет учащиеся выполняют задания на отдельных листках, которые консультантом сдаются учителю. Ясно, что при подборе консультантов следует учитывать не только уровень их математической подготовки, но и личностные качества (ответственность, тактичность, принципиальность, справедливость). Учителя используют и разные виды зачета; устный зачет без предварительной подготовки к ответу. Ответы учащихся могут быть даны как в письменной, так и в устной форме. Желательно урок-зачет проводить после решения ключевых задач, это помогает ученикам осознать, как и для чего применяется теоретический материал и понять его сущность.
Следующий этап: уроки-практикумы, структуру заданий, предлагаемых учащимся, иллюстрирует схема 2.