6-й етап - дослідження задачі;
7-й етап - формулювання відповіді задачі;
8-й етап - аналіз розв'язування задачі.
Математичні задачі, для розв'язування яких в шкільному курсі математики існують готові правила, або ці правила безпосередньо випливають з означень чи теорем, що визначають програму розв'язування цих задач у вигляді послідовності кроків, називають стандартними. При цьому передбачається, що для виконання окремих кроків розв'язування стандартних задач в курсі математики існують конкретні правила.
Процес розв'язування стандартних задач має деякі особливості.
1. Аналіз задач зводиться до встановлення (розпізнавання) виду задач, до
якого належить дана
2. Пошук розв'язування полягає у складанні на підставі загального правила (формули, тотожності) або загального положення (означення, теореми) програми – послідовностікроків розв'язування задач даного виду. Звичайно, немає-необхідності цю програму формулювати в письмовій формі, достатньо її для себе намітити усно.
3. Саме розв'язання стандартної задачі полягає у застосуванні цієї загальної програми до умови даної задачі. Якщо деякі кроки програми розв'язування вимагають для свого виконання використання також інших програм, то стосовно них проводяться ті самі операції (розпізнавання виду задачі, складання програми розв'язування і виконання розв'язування на основі цієї програми). Звідси походить, що для того щоб легко розв'язувати стандартні задачі (а вони є основними математичними задачами, оскільки всі інші зрештою зводяться до них), треба:
1) пам'ятати всі вивчені в курсі математики загальні правила (формули, тотожності) і загальні положення (означення, теореми);
2) вміти розгортати згорнуті загальні правила, формули, тотожності, а також означення і теореми у програмі - послідовності кроків розв'язування задач відповідних видів.
У визначенні стандартних задач як основну ознаку цих задач вважають наявність в курсі математики таких загальних правил чи положень, які однозначно визначають програму розв’язання цих задач і виконання кожного кроку цієї програми.
Звідси зрозуміло, що нестандартні задачі - це такі задачі, для яких в курсі математики немає загальних правил і положень, що визначають точну програму їх розв’язування.
Процес розв’язування будь-якої нестандартної задача складається у послідовному застосуванні двох основних операцій:
1. Зведення (шляхом перетворення або переформулювання) нестандартної задачі до іншої, їй еквівалентної, але уже стандартної задачі;
2. Розбиття нестандартної задачі на декілька стандартних підзадач.
В залежності від характеру нестандартної задачами використовуємо одну із цих операцій або обидві. При розв'язуванні більш складних задач ці операції доводиться застосовувати багаторазово.
Відомо, що будь-який урок — це складне педагогічне явище, витвір вчителя, на якому учні демонструють свої знання, уміння та навички.
Чи цікаво дітям на уроці? Чи люблять вони вчитися?
На ці питання не можна відповісти напевне. Іноді діти ідуть на урок із задоволенням, іноді без нього. Як зацікавити дітей? Як привернути їх увагу до свого предмету? Звичайно, за допомогою того, що їм буде слухати найцікавіше, того, що вони будуть робити із задоволенням.
Як донести матеріал до їх свідомості яскраво і красиво, щоб запам'яталось надовго і назавжди?
Іноді можна почути, що математика складна, суха і нецікава наука. Людей, які люблять математику, це вражає й ображає. Математика сувора, але красива й глибока, як чиста криниця. А завдання — вчителя і полягає в тому, щоб розкривати перед учнями її емоційний бік, чуйну і вродливу стать. Як краще цього домогтися?
Красивими, цікавими уроками. Уроками, які пробуджують цікавість і працьовитість, фокусують увагу і зосередженість. Отже, нестандартний урок. Він не вкладається в рамки виробленого і сформульованого дидактикою. На цьому уроці можна не дотримуватись чітких етапів навчального процесу, методів, традиційних видів роботи. Для такого уроку характерною є інформаційно-пізнавальна система навчання — оволодіння готовими знаннями, пошук нових форм викладу, розкриття внутрішньої сутності явищ через гру, змагання або нетрадиційні форми роботи з дітьми, використовувати власні дидактичні матеріали, часто саморобні і тим більше корисні для учнів.
Для прикладу наведу урок у 6 класі з теми «Відсотки» під назвою «Бізнес-гейм».
Щоб наблизити математику до життя, щоб показати її різноманітність застосування, цей урок було проведено у вигляді ділової гри.
Учнів класу було поділено на три команди, і весь урок вони працювали за груповим методом. Кожна команда сиділа за окремим великим столом. Ідея уроку полягала в тому, що учні — гості, які приїхали у місто «Відсоток», а вчитель — бізнесмен, мешканець цього міста, знайомить їх з ними і його мешканцями. Під час цієї мандрівки з учнями трапляються цікаві пригоди — вони витрачають і заробляють гроші, займаються бізнесом, а допомагають їм у цьому відсотки. Урок краще проводити в кінці теми, щоб діти були знайомі з усіма типами задач на відсотки. Цей урок вимагає гарної підготовки вчителя. Необхідно намалювати яскраві плакати з написами об'єктів продажу, картки з задачами, принести гральний кубик і кашкети з написами «Бізнес-гейм». У проведенні уроку вчителеві допомагають учні цього класу — «працівники фірми». Учень начальник фінансів — буде вести банківські рахунки команд на одній з відкидних дощок, троє менеджерів по одному біля кожного з трьох столів – для виплати коштів, зароблених учнем окремо та для того, щоб кидати гральний кубик.
Під час проведення цього уроку спостерігається велика зацікавленість учнів, вони активні, збуджені, працюють із задоволенням це можна пояснити, мабуть, тим, що учні відчувають себе у ролі бізнесменів, мають змогу заробити і витратити власний капі лат. Це урок – міні-модель сучасного життя, де без знань відсотків та їх застосування не обійтись. Тому ми бачимо і мотиваційний бік цього уроку. Під час підведення підсумків я відзначаю не тільки командну роботу певної групи учнів, але й індивідуальні відповіді.
Досвід роботи показує, що для поліпшення розуміння, закріплення та відтворення інформації доцільно проводити такі уроки як: урок-змагання; урок-вікторина, урок- “круглий стіл”; урок-гра та ін. Щоб зацікавленість учнів до вивчення математики не знижувалась, доречно систематично проводити ігри з використанням інтерактивних технологій.
Так у 9 класі практикую проведення уроків-змагання під час узагальнення і систематизації знань учнів з певної теми. Наприклад, урок узагальнення і систематизації знань за темою “Числові послідовності”. Клас поділено на три команди: “Трикутник”, “Квадрат”, “Коло”.
1. Актуалізація опорних знань учнів (міні-іспит) – у формі змагання між трьома командами. Кожна з команд задає другим командам по два питання; за правильну відповідь – плюс 1 бал, за неправильну – мінус 1 бал.
2. Математичне лото. Кожній з команд пропонується завдання, яке складається з дев’яти задач. До них додається стільки ж (квадратних) карток, на яких записані відповіді. Номер ставиться на тому боці картки, на якому записана відповідь. На зворотному боці картки написана частина висловлювання про математику.
3. Захист творчих робіт капіталами команд.
4. Підсумок уроку.
Така організація учбової діяльності на уроці дає можливість реалізувати принципи диференціації навчання, оскільки гарантує участь кожного учня на тому чи іншому етапі уроку. Так, учні з низьким рівнем навчальних здібностей можуть забезпечити команді бали на І етапі уроку, а учні з високими здібностями – виступи із захистом творчих робіт. Другий етап уроку – “поле діяльності” для учнів з середніми навчальними здібностями.
Позакласна робота з математики дуже важлива для пробудження в учнів інтересу до математики. Тому математичні вікторини, змагання, ігри, прес-конференції, вечори сприяють підвищенню математичної культури, розширюють і поглиблюють здобуті на уроках знання, показують застосування їх на практиці, розвивають мислення, математичні здібності, допомагають ввійти у світ наукових і технічних ідей.
Так при проведенні прес-конференції “Гранітна опора наук” учні 7-9 класів багато дізналися про значення математики в різних галузях людської діяльності. Така форма роботи сприяє розширенню кругозору учнів, розвиткові уміння самостійно й творчо працювати з навчальною, науково-популярною літературою, формуванню в дітей інтересу до математики, а також поглибленню знань.
Учням дуже подобається брати участь в іграх, правила яких максимально наближені до умов тих ігор, за якими вони мають можливість спостерігати з екранів телевізорів. Такими іграми є “Перший мільйон”, “Поле чудес”, “Слабка логіка” та інші.
Щоб розвинути творчі здібності учнів, поступово та систематично залучати до самостійної пізнавальної діяльності, щоб забезпечити співпрацю між учнями та учителем, традиційного уроку недостатньо.