Смекни!
smekni.com

Методика решения задач повышенной трудности в старших классах средней школы (стр. 3 из 12)

Таким образом, при решении задач можно выделить следующие общие приемы мыслительной деятельности: первый прием - прием развертывания термина, он состоит в выведении всевозможных следствий из условия задачи или в выяснении всевозможных свойств объектов, о которых говорится в задаче. Второй прием - анализ через синтез - «челнок» состоит в чередовании восходящего анализа и синтетических рассуждений. Эти два приема подводят к формированию плана решения задачи. Третий прием - прием построения дедуктивных умозаключений. Именно эти приемы должны быть отработаны с учащимися.

В заключение отметим, что большинство приемов поиска решения задач базируется на достаточно серьезном логическом содержании, поэтому овладение ими учащимися возможно лишь при условии систематического и целенаправленного их применения. Полезно практиковать в этих целях краткий методологический комментарий, разъясняющий учащимся суть применяемых приемов поиска решения задач [10,12].

Сам процесс решения задач при определенной методике оказывает весьма положительное влияние на умственное развитие детей, поскольку он требует выполнения умственных операций анализа и синтеза, абстрагирования и конкретизации, сравнения, обобщения.

Существуют различные методические подходы к обучению детей решению текстовых задач. Но какую бы методику обучения ни выбрал учитель, ему надо знать, как построены такие задачи, и уметь их решать разными способами.

Итак, любая текстовая задача – как считает Л.П. Стойлова – есть описание на естественном языке какого-либо явления (ситуации или процесса) с требованием дать количественную характеристику какого-либо компонента этого явления, установить наличие или отсутствие некоторого отношения между компонентами или определить вид этого отношения. М.И. Моро, А.М. Пышкало определяют задачу, как сформулированный словами вопрос, ответ на который может быть получен с помощью арифметических действий.

Прежде всего, каждая задача включает числа: данные и искомые. Числа в задаче характеризуют численности множеств или значения величины, выражают отношение или являются отвлеченными данными числами.

Каждая задача имеет условие и вопрос. В условии задачи указываются связи между данными числами, а так же между данными и искомыми; эти связи и определяют выбор соответствующих арифметических действий. Вопрос указывает, какое число является искомым. Исходя из этого, И.Б. Истомина считает, что любое математическое задание можно рассматривать, как задачу, выделив в нем условие и требование.

Уточним теперь смысл термина «решение задачи». Так сложилось, что этим термином обозначают разные понятия:

1) решением задачи называют результат, т.е. ответ на требование задачи, на поставленный в ней вопрос. Чаще всего дети понимают под решением задачи ответ на поставленный ней вопрос.

2) решением задачи называют процесс нахождения этого результата, причем этот процесс рассматривается двояко: и как метод нахождения результата, (например, говорят о решении задачи арифметическим способом) и как последовательность действий, которые выполнит решающий, применяя тот или иной метод (т.е. в данном случае под решением задачи понимается вся деятельность человека, решающего задачу).

Довольно часто бывает так, что как только учитель сообщил задачу, дети сразу же дают ответ на ее вопрос. Но это далеко не всегда удовлетворяет учителя. Он стремится выяснить, как получен ответ, на основе каких рассуждений, с помощью какого арифметического действия и т.п. сначала учитель требует обычно «полного» ответа на вопрос. Это имеет смысл не только с точки зрения развития устной речи учащегося, но и для того, чтобы дети еще раз вернулись мысленно к тексту задачи, сопоставляли свой ответ с условием и вопросом задачи. Получив ответ, учитель продолжает спрашивать: «Как ты это узнал?» Этот, казалось бы, простой вопрос нередко для ученика бывает трудным: «Я догадался», «Я посчитал» - вот типичные ответы первоклассников в подобных случаях (а иногда и просто «Я не знаю») Среди учителей было распространено мнение, что если ученик не может объяснить, как получил ответ на вопрос задачи, значит, он не решил ее. Дети внутренне не могут с этим согласиться. Возникает своего рода конфликтная ситуация, которая в данном случае совсем не полезна. Причина ее заключается в том, что учитель понимает требование решить задачу значительно шире, чем просто дать ответ на ее вопрос.

Для того, чтобы такого взаимонепонимания между учителем и учащимся не возникало, необходимо разъяснить детям смысл требование «решить задачу». Полезно, например, сказать детям следующее: «Задачи, которые вы решаете на уроках математики, - это не загадки, которые надо разгадать». Решить задачу – это значит объяснить какие действия нужно выполнить над данными в ней числами, чтобы после вычислений получить число, которое в ней нужно узнать. Записать решение задачи – значит с помощью цифр и знаков действий показать, что нужно сделать, чтобы найти неизвестное число, выполнить вычисление и дать ответ на вопрос задачи.

Научить детей решать задачи ‑ значит научить их устанавливать связи между данными и искомым и в соответствии с этим выбирать, а затем и выполнять арифметические действия.

Чтобы добиться этого, учитель должен предусмотреть в методике обучения решению задач одного вида ступени, имеющие свои цели.

На первой ступени учитель ведет подготовку к решению задач рассматриваемого вида. На этой ступени дети должны усвоить связи, на основе которых они будут выбирать действия при решении таких задач.

На второй ступени учитель знакомит учеников с решением задач рассматриваемого вида. Здесь дети учатся переходить от конкретной ситуации, выраженной в задаче, к выбору соответствующего арифметического действия.

На третьей ступени учитель формирует умение решать задачи рассматриваемого вида. Учащиеся должны научиться решать любую задачу независимо от ее конкретного содержания.

Особенность решения сюжетной задачи состоит в том, что решаются, вообще говоря, две разные, хотя и взаимосвязанные проблемы: перевод содержания задач на язык математики (то есть математизация содержания) и решения собственно математической задачи средствами математики, что образует процесс сложной умственной деятельности. Чтобы овладеть им, надо знать основные этапы решения задачи и некоторые приемы их выполнения [11,15].

Структуру процесса решения задачи можно представить в виде следующей схемы:



1.3 Методические особенности решения нестандартных задач

Главная цель задач ‑ развить творческое и математическое мышление учащихся, заинтересовать их математикой, привести к "открытию" математических фактов.

Я считаю, что достичь этой цели с помощью обычных стандартных задач невозможно. Опыт использования ряда нестандартных задач показывает, что для формирования самостоятельности мышления, воспитания творческой активности необходимо включать их в систему упражнений и задач, используемых на уроке, во внеклассной работе. Решение нестандартных задач вызывает у детей наибольшие затруднения. Остановимся на понятии "нестандартная задача".

"Нестандартные задачи ‑ это такие, для которых в курсе математики не имеется общих правил и положений, определяющих точную программу их решения", ‑ считает Фридман Л.М.[20]. Однако следует заметить, что понятие "нестандартная задача" является относительным. Одна и та же задача может быть стандартной или нестандартной в зависимости от того, знакомы ли ученики со способами решения таких задач.

Нестандартная задача ‑ это задача, алгоритм решения которой учащимся неизвестен, т.е. учащиеся не знают заранее ни способов её решения, ни того, на какой учебный материал опирается решение.

Как учитель может помочь учащимся решать нестандартные задачи? Универсального метода, позволяющего решить любую нестандартную задачу, нет, т.к. нестандартные задачи в какой-то степени неповторимы.

Однако в методике можно найти описание опыта учителей, добивающихся хороших результатов в математическом развитии учащихся. Некоторые методические приемы обучения учащихся способам решения нестандартных задач сформированы в книгах Ж. Пойа "Как решать задачу, "Математическое открытие"; Л.И. Фридмана и Е.Н. Турецкого " Как научиться решать задачу"; Ю.М. Колягина "Учись решать задачу". Рассмотрим отдельные методические приемы обучения учащихся решать нестандартные задачи:

1. Прежде всего, отметим, что научить учащихся решать задачи (в т.ч. нестандартные) можно только в том случае, если у учащихся будет желание их решать, т.е. если задачи будут содержательными и интересными с точки зрения ученика. Поэтому задача учителя ‑ вызвать у учащихся интерес к решению той или иной задачи. Необходимо тщательно отбирать интересные задачи и делать их привлекательными для учащихся.

Это могут быть ‑ задачи ‑ шутки, задачи ‑ сказки, старинные задачи и т.п. Одно бесспорно: наибольший интерес у учащихся вызывают задачи, взятые из окружающей жизни, задачи, связанные со знакомыми вещами, опытом. Важно показать детям, что от решения математической задачи можно получить такое же удовольствие, как от разгаданного кроссворда или ребуса.

2. Задачи не должны быть слишком легкими, но и не слишком трудными, т.к. ученики, не решив задачу или не разобравшись в решении, предложенном учителем, могут потерять веру в свои силы. В этом случае очень важно соблюсти меру помощи. Прежде всего, учитель не должен знакомить учащихся с уже готовым решением. Подсказка должна быть минимальной. Л.М. Фридман в своей книге "Как научиться решать задачи" пишет: "Для успешного решения нестандартных задач необходимо, прежде всего, уметь думать, догадываться. Но этого мало. Нужны, конечно, и знания, и опыт в решении необычных задач; полезно владеть и определенными общими подходами к решению".