Чтобы помочь учащимся найти путь к решению задачи, учитель должен уметь поставить себя на место решающего задачу, попытаться увидеть и понять источник его возможных затруднений. Умелая помощь учителя оставляющая различную долю самостоятельной работы, позволит ученикам разумную долю самостоятельной работы, позволит ученикам развить математические способности, накопить опыт, который в дальнейшем поможет находить путь решения новых задач.
"Лучшее, что может сделать учитель для учащегося, состоит в том, чтобы путем неназойливой помощи подсказать ему блестящую идею. Хорошие идеи имеют своим источником прошлый опыт и ранее приобретенные знания.
Часто оказывается уместным начать работу с вопроса: "Известна ли вам какая-нибудь родственная задача?"[10]. Таким образом, хорошим средством обучения решению задач, средством для нахождения плана решения являются вспомогательные задачи.
Умение подбирать вспомогательные задачи свидетельствует о том, что учащиеся уже владеют определенным опытом решения нестандартных задач. Если этот опыт невелик, то можно предложить учащимся вспомогательные задачи. Умело поставленные вопросы, вспомогательные задачи помогут понять идею решения.
Необходимо стремиться к тому, чтобы учащиеся испытывали радость от решения трудной для них задачи.
Рассмотрим примеры решения таких задач, с тем, чтобы выяснить особенности процесса их решения.
1. В трех ящиках 300 яблок. Число яблок первого ящика составляет половину числа яблок второго ящика и треть числа яблок третьего ящика. Сколько яблок в каждом ящике?
Решение. Эта задача является текстовой. Для подобных задач никакого общего правила, определяющего точную программу, их решения не существует. Однако это не значит, что вообще нет каких-либо указаний для решения таких задач. Обозначим количество яблок в первом ящике через х. Тогда во втором ящике было 2х яблок, в третьем - 3х. Следовательно, сложив все числа х+2х+3х, мы должны получить 300 яблок. Получаем уравнение х+2х+3х=300.Решив уравнение, найдем: х=50 яблок, 2х=100 яблок, 3х=150 яблок.
Значит, в первом ящике было 50 яблок, во втором ‑ 100 яблок, в третьем ‑ 150 яблок. Проанализируем процесс приведенного решения задачи. Сначала мы определили вид задачи "текстовая задача", и, исходя из этого, возникла идея решения ("составить уравнение").
Для этого, пользуясь общими указаниями и образцами решения подобных задач, полученных на уроках ("надо обозначить одно из неизвестных буквой, например х, и выразить остальные неизвестные через х, затем составить равенство из полученных выражений"), мы построили уравнение.
Заметим, что эти указания, которыми мы пользовались, не являются правилами, ибо в них ничего не сказано, какое из неизвестных обозначить через х, как выразить остальные неизвестные через х, как получить нужное равенство и т.д. Все это делается каждый раз по-своему, исходя из условий задачи и приобретенного опыта решения подобных задач. Полученное уравнение представляет собой уже стандартную задачу. Решив её, мы тем самым решили и исходную нестандартную задачу.
Смысл решения данной задачи состоит в том, что с помощью особого приема (составление уравнения) мы свели её решение к решению стандартной задачи.
2. В магазин "Цветы" привезли 30 желтых тюльпанов и столько же красных. Каждые 3 желтых тюльпана стоили 20 руб., а каждые 2 красных тюльпана стоили 30 руб. Продавец сложила все эти тюльпаны вместе и решила сделать букеты по 5 тюльпанов и продавать их по 50 руб. Правильно ли она рассчитала?
Решение. Найдем стоимость всех тюльпанов, если бы продавец не складывала тюльпаны вместе (реальную стоимость)
руб. Найдем стоимость тюльпанов в том случае, когда продавец сложила их по 5 в букеты и стала продавать по 50 руб. (предполагаемая стоимость) руб. Сравниваем реальную и предполагаемую стоимость тюльпанов 650 руб. > 600 руб. Обнаруживаем, что расчет продавца ошибочен, т.к. при сложении всех тюльпанов и продажи их по 5 шт. в букетах она теряет 50 руб.Процесс решения этой нестандартной задачи состоит в следующем: данную задачу мы разбили на такие подзадачи:
1) нахождение реальной стоимости;
2) нахождение предполагаемой стоимости;
3) сравнение полученных стоимостей и вывод о расчете продавца.
Решив эти стандартные подзадачи, мы в конечном итоге решаем и исходную нестандартную задачу. По мнению Л.М. Фридмана [19,20], процесс решения любой нестандартной задачи состоит в последовательном применении двух основных операций:
• сведение (путем преобразования или переформулирования) нестандартной задачи к другой, ей эквивалентной, но уже стандартной (способ моделирования);
• разбиение нестандартной задачи на несколько стандартных вспомогательных подзадач (способ разбиения). Для того чтобы легче было осуществлять способы разбиения и моделирования, мы считаем полезным построение вспомогательной модели задачи ‑ схемы, чертежа, рисунка, графа, графика, таблицы.
3. Сколько всего различных незамкнутых ломаных можно построить с вершинами в точках A, B, C, D на рисунке?
Задача 3 – это фактически задача на перебор вариантов. Ее цель состоит в том, чтобы дать учащимся возможность накопить некоторый опыт по подсчету числа вариантов и по построению дерева вариантов.
После обсуждения ответов и решений учащихся учитель может сказать примерно следующее:«Вы получили разные ответы, но никто не смог доказать, что он перебрал все возможные случаи. Давайте попробуем разработать такой способ подсчета, при котором можно быть уверенным в том, что мы перебрали все возможные варианты.» Тогда словосочетание «перебор … вариантов» появляется в таком контексте, что смысл его объяснять не надо, тем более, что используемые слова учащимся к этому моменту уже знакомы из других жизненных ситуаций.
Далее учащимся предлагается сначала посчитать, сколько можно построить ломаных с началом в точке А. Рассуждаем так: из точки А можно пойти в точку B или в точку C или в точку D. Чтобы ничего не пропустить, сделаем рисунок:Теперь подумаем, куда мы можем пойти из точки B, из точки C, из точки D, и т.д. В результате рассуждений получаем такой рисунок.
«Итак, мы видим, что можно построить 6 ломаных с началом в точке A. Как вы думаете, сколько всего ломаных мы получим, если проделаем такую же работу с остальными точками? Проверьте свое предположение дома» [9].
Здесь работа над задачей в классе заканчивается и учащимся предлагается закончить ее дома: изобразить все ломаные с началом в точке A и, рассуждая аналогично (сделав такой же рисунок), выписать и изобразить все ломаные с началом в точках B, C и D. В процессе выполнения этой работы учащиеся заметят, что каждая ломанная повторяется дважды, поскольку, например, ABCD и DCBA – это одна и та же ломаная. Поэтому всего различных ломаных получится не
, а вдвое меньше – 12.Далее учащимся предлагается дома на альбомном листе изобразить все 12 ломаных.
4. Изобразите отрезок MN. Отметьте на нем точки K и L так, чтобы отрезок KN составлял , а отрезок ML – отрезка MN. Какую часть отрезков MN, NK, ML, MK и NL составляет отрезок KL? Прежде чем решать задачу подумайте, какой длины удобно взять отрезок MN.
Подсказка содержится в тексте задачи. Учащимся предлагается в классе прочитать первые два предложения и подумать над подсказкой.
Изобразим отрезок и отметим на нем точки. Отрезок KL составляет
длины отрезка MN, длины отрезка NK, длины отрезка ML, 1 длины отрезка MK, 1 длины отрезка NL.5. Решите задачу подбором. Из 29 коробок часть содержит по 14 кг конфет, а часть по 15 кг. Сколько тех и других коробок, если общая масса конфет в коробках обоих типов одинаковая?
Внимательно изучив данные, видим, что 14 + 15 = 29. Значит коробок, в которых по 14 кг должно быть 15, а тех, в которых по 15 кг – 14 [1].
6. Пассажир поезда, идущего со скоростью 50 км/ч, заметил, что встречный поезд шел мимо него в течение 10 секунд. Определите длину встречного поезда, если его скорость – 58 км/ч.