1) 10, 10, 16; 3) 12, 12, 14;
2) 10, 16, 16; 4) 12, 14, 14;
Первый вариант отпадает сразу, так как в этом случае третий бегун отстанет от второго.
По аналогичной причине отпадает второй вариант (третий бегун обгонит первого). Остаются два варианта. Соответственно имеем две системы (уравнения составляются на основании условия равенства времени, затрачиваемого на маршрут бегунами):
Для каждой системы легко выразить
Ответ. Треугольник тупоугольный (тупым является угол АСВ).
2. Вася и Петя победили между собой 39 орехов. Число орехов, доставшихся любому из них, меньше удвоенного числа орехов, доставшихся другому. Квадрат трети числа орехов, доставшихся Пете, меньше числа орехов, доставшихся Васе. Сколько орехов у каждого?
Решение. Если мы обозначим через x и y количество орехов, доставшихся соответственно Васе и Пете, то без труда составим систему из одного уравнения и трех неравенств:
Сложность задачи в третьей части – в решении системы. При этом мы должны помнить, что x и y – целые положительные числа. Из уравнения найдем
Из первых двух неравенств найдем
Ответ. 25 и 14 орехов.
3. Пункт А находится на берегу реки, ширина которой 400 м, скорость течения 3 км / ч. Пункт В расположен ниже по течению в 4 км от А (если В1 – проекция В на берег, на котором расположен А, то АВ1=4 км), на расстоянии 2 км 680 м от противоположного берега (А и В – по разные стороны реки). Турист выехал из А на лодке, пересек реку, оставил на берегу лодку, дошел до В и вернулся тем же путем. На всех участках, по реке и по суше, он двигался прямолинейно. Скорость лодки в стоячей воде 5 км / ч, скорость передвижения туриста пешком 3,2 км / ч. За какое наименьшее время мог проделать свое путешествие турист?
Решение. Пусть турист приплыл в точку С на противоположном берегу. Причем СD = x, где D – пункт, противоположный А (рис. 1,а) ( АD перпендикулярен берегам ). Если время на прохождение участка АС равно t1, то на участке CD можно найти такую точку С1, что AC1 = 5t1, C1C = 3t1.
Это означает, что вектор
если бы не было течения, и
Рис. 1 а)
Записав для треугольника AC1D теорему Пифагора, получим
или
Аналогично, если t2 – время на пути от C до A, определив точку С2 ниже С так, что
Поскольку t1 и t2 – положительные корни соответственно уравнений (1) и (2), то
есть время передвижения на лодке. Время движения по суше равно
Таким образом, время, затраченное на путешествие, будет:
Рис. 1 б)
Рассмотрим два прямоугольных треугольника PNM и KLP: катеты одного x и 0,32, другого 4-x и 2,68, расположенных, как показано на рисунке 1,б. Тогда
Длина ломанной KPM будет минимальной, если точка P лежит на отрезке
KM . Но
Таким образом, минимальное время будет:
Ответ. Наименьшее время, за которое турист мог проделать свое путешествие
Уравнения и неравенства ‑ традиционная тема школьного курса математики, занимающая большое место, начиная с младших классов, где простейшие уравнения и неравенства до введения теории на основе свойств арифметических действий, и кончая старшими классами, где решаются трансцендентные уравнения.
Уравнения и неравенства представляют собой тот алгебраический аппарат, тот язык, на который переводятся разного рода задачи, в том числе и прикладные, строятся их математические модели.
Использование монотонности функций при решении уравнений и неравенств. Одну из наиболее часто встречающихся идей хорошо иллюстрирует решение следующего простого неравенства:
1. Решить неравенство:
Решение. Есть два стандартных пути решения: возведение в квадрат (при условии
Рассмотрим еще один способ – нестандартный. Функция, расположенная в левой части, монотонно возрастает, в первой части убывает. Из очевидных графических соображений следует, что уравнение
Ответ.
2. Решить уравнение: .
Решение. Данное уравнение имеет очевидное решение x = 1. Докажем, что других решений нет. Поделим обе части на