“Начала” починаються з означень, постулатів і загальних понять. Характер означень у Евкліда різний. Переважно вони описують поняття, наприклад “точка є те, що не має частин” (гл. І). Проте трапляються і номінальні (словесні) означення, які, як і перші, не мають стосунку до доведень, вони логічно не дійові. Евклід використовує також генетичні та аксіоматичні означення.
У першій главі сформульовано п’ять постулатів і дев’ять аксіом, із яких Евклід повинен був розвинути всю геометричну систему виключно логічним шляхом. Із сучасної точки зору, відмінностей між постулатами й аксіомами немає, і всі вони можуть називатись аксіомами.
Далі у 13ти книгах доводиться 470 тверджень, які слідують одне за одним без будьяких пояснень і міркувань про значення тієї чи іншої теми, твердження або хід доведення. Ця одноманітна манера викладу, переобтяжена різними частковими випадками, є однією з причин негативного ставлення в нові часи до “Начал” Евкліда як до навчального посібника у шкільному викладанні.
Чи вдалося Евкліду побудувати геометрію чисто дедуктивним способом, без посилання на наочність і очевидність, не вводячи неявно допоміжних тверджень, які не були вказані в аксіомах? Із сучасної точки зору, ми знаходимо логічні недоліки як в означеннях, так і (найбільше) в системі аксіом. Усі геометричні поняття мають бути суворо поділені на дві категорії: основні, які приймаються без означень (потрібні їх властивості повинні описуватися в аксіомах), і похідні поняття, які вводяться за допомогою означень, що пов’язують ці поняття з основними. Евклід у “Началах” не виділяє основних понять. Він намагається означити всі поняття геометрії (означення понять точки, лінії, поверхні й багатьох інших туманні та беззмістовні, тому й не використовуються ніде в доведеннях).
Можна сказати, що міркування Евкліда − це суміш логіки та інтуїції. Що стосується недоліків “Начал”, то потрібно підкреслити, що ці недоліки у великому творінні Евкліда в основному були помічені критичною думкою лише у ХІХ ст. Критична переробка основ геометрії є однією з найглибших і найважчих проблем математичної думки й одним із найзначніших її досягнень. Тому, відзначивши те, чого із сучасного погляду не вистачає у творі Евкліда, ми не можемо звинувачувати його, якщо врахуємо стан науки в той час. Навпаки, ми повинні визнати цей твір стародавнього світу прекрасним для тієї епохи за своєю продуманістю й точністю. Вони є завершенням, вінцем усього нагромадженого працями кількох поколінь стародавніх грецьких математиків і філософів, у них, як у фокусі, зібрані досягнення геометрії за величезний період культурного розвитку людства.
Подруге, “Начала” послужили джерелом, з якого черпали і на якому формувались уми багатьох видатних учених у наступні два тисячоліття, і основою для подальшого розвитку геометричних ідей. “Начала” Евкліда тісно пов’язані із сучасною людською культурою: з одного боку, всі сучасні шкільні підручники геометрії, за якими вчаться у школах усіх країн, так чи інакше мають своїм прообразом “Начала”.
Нарешті, велике історичне значення “Начал” Евкліда, як підкреслював Ф.Клейн, полягає в тому, що вони передали наступним поколінням ідеал цілком логічної обробки геометрії. “Начала” органічно пов’язані з розвитком обґрунтування математики загалом й геометрії зокрема.
Найхарактернішою особливістю математики є логічно послідовний ряд тверджень. Ця характерна риса точної науки яскраво виявилася вже в найдавніших її розділах арифметиці і геометрії.
Згодом з'явилися в математиці й формули особлива мова для запису міркувань і теорем, мова зручна, точна і лаконічна. Наприклад, відому теорему Піфагора можна сформулювати словами: “Квадрат гіпотенузи прямокутного трикутника дорівнює сумі квадратів катетів”. Але математик надасть перевагу короткій рівності:
Як бачимо, в теоремі Піфагора йдеться про властивість прямокутного трикутника. Узагалі, в будьякій теоремі чи формулі виражені властивості математичних об'єктів: чисел, фігур, математичних операцій, рівнянь, функцій...
З’ясуємо, як математики вводять у свої міркування нові об'єкти – означують математичні поняття.
Що таке квадрат? Згідно означення: це прямокутник, у якого всі сторони рівні між собою. Поняття квадрата, як бачимо, подається через більш загальне поняття прямокутника. А що таке прямокутник? Це паралелограм, у якого всі кути прямі. Ще один крок до поняття більш елементарного. А паралелограм? Це чотирикутник, у якого протилежні сторони попарно паралельні.
Такий спосіб побудови математичних понять використовував ще Аристотель. Великий древньогрецький філософ назвав його так: означення через рід і видову відмінність.
Наприклад, прямокутник відноситься до роду паралелограмів, а його видова відмінність полягає в тому, що усі його кути прямі. Паралелограм відноситься до роду чотирикутників, а видова відмінність – паралельність протилежних сторін. Поняття чотирикутника, у свою чергу, визначається через поняття відрізка, а той визначається як частина прямої, що міститься між двома точками цієї прямої, включаючи і ці точки.
Так у ході свого аналізу ми добралися до основних геометричних понять, про які мова йде в аксіомах геометрії “точка” і “пряма”, “лежати” і “між”.
А як визначаються основні поняття? Подивимось як це робив батько геометрії Евклід.
Відкриємо знову його «Начала»: “Точка є те, що не має частин. Лінія це довжина без ширини. Кінці ж лініїточка. Пряма лінія є та, що однаково розташована стосовно точок на ній...” [ ].
Чи задоволені Ви таким означенням? Мабуть, ні! Напевно, виникають питання: Хіба тільки про пряму лінію можна сказати, що вона однаково розташована відносно своїх точок? Адже такою ж властивістю володіє й коло. А що таке довжина? ширина? Хіба ці поняття теж не вимагають означень?
Особливо над цими питаннями математики стали замислюватися на межі XIX і XX століть. Глибокий аналіз Евклідової геометрії показав, що не такою вже і стрункою є ця древня споруда. Недоліки в її конструкції містяться у фундаменті. Почалася кропітка робота, спрямована на усунення цих недоліків.
То як же виглядають початки геометрії у сучасному викладі? Візьмемо книгу німецького математика Давида Гильберта ”Основи геометрії” [13]:
“Ми мислимо три різні системи речей: речі першої системи ми називаємо точками, речі другої системи ми називаємо прямими, речі третьої системи ми називаємо площинами. Ми мислимо точки, прямі й площини у визначених співвідношеннях і позначаємо ці співвідношення різними словами, а саме: належати, між, конгруентний (тобто такі, що суміщаються при накладанні), паралельний, неперервний”.
Як бачимо, Гильберт і не збирається означувати основні об’єкти геометрії точку, пряму, площину. Ці поняття вважаються основними, неозначуваними.
3.2 Роль логічних доведень геометричних тверджень(лем та теорем)
Доведення – це логічна операція обґрунтування істинності якогонебудь судження за допомогою інших істинних та з’язаний з ним суджень. Другими словами, це виведення одного знання з другого, істинність якого уже встановлена і перевірена практикою. Логічна структура доведення у всякому доведенні є теза, яка доводиться, аргумент, що використовуються на підтвердження тези і демонстрація, якими чином логічно будується процес доведення [10].
Роль аргументів в доведенні виконують: 1.Встановлені в науці узагальнення. 2. Очевидні положення, які безсумнівні і не потребують окремого доведення. 3. Достовірні факти і зібрані дані. Демонстрація – це логічний зв’язок між аргументами і тезою. Обґрунтування тези може мати форму умовиводу дедуктивного, індуктивного чи аналогії. Дедуктивне обґрунтування здебільшого зводиться до підведення часткового випадку (тези) під загальне правило і висловлюється у вигляді умовнокатегоричного судження. При цьому теза одержує значення істини, що підтверджена достовірними аргументами. Індуктивне обґрунтування підтверджує загальну тезу перерахуванням ряду фактів, прикладів. При цьому достовірність тези тут залежить від міри повноти перерахованих фактів та від всебічності розгляду самої тези.В аналогічному обґрунтуванні теза доводиться посиланням на достовірні факти і положення в інших подібних явищах, предметах і подіях. Застосовується у витлумаченні конкретних історичних подій, в моделюванні.
Способи доведення є прямі і побічні. В прямому доведенні теза обґрунтовується безпосередньо, “на пряму”. В побічному доведенні істина доводиться з використанням протилежної тезі допущення (антитези). Це доведення використовується тоді, коли тезу неможливо довести в прямому значенні, безпосередньо.
Спростування – це руйнування доведення шляхом виявлення хибності тези, хибності обґрунтування (аргументів) і хибності самої логіки доведення. Воно може бути прямим чи побічним. Пряме спростування показує абсурдність тези (зведення до абсурду). Побічне спростування доводить істинність тези, що несумісна з висунутою тезою опонента. При доведеннях і спростуваннях, особливо в усній формі, велике значення має ерудиція опонентів, послідовність розгортання думки, красномовство, а також вміння подіяти на почуття художнім словом, ораторськими здібностями тощо. Навмисне логічне заплутування думки одержало назву софізму (пустого мудрствування), яке хоча і може справити враження, але немає ніякої ні формальнологічного, ні змістовного значення.
Розбудовуючи будьяку математичну теорію, ми рухаємося вперед. Тобто виявляємо і доводимо все нові й нові теореми. Однак можна рухатись й у зворотному напрямку. Якщо ми захочемо вияснити на які теореми спирається кожна теорема, то ми обов'язково доберемося до таких тверджень, істинність яких приймається без доведення. Їх називають аксіомами або постулатами.