Пример: Доказать, что 3= -3.
Док-во: Пусть 3=-3
II. б) Восходящий анализ:
Дано: Окружность; CD, AB – хорды, AB
Доказать: AM∙MB=CM∙MD.
Док-во: не известно, верно ли доказываемое равенство, но если получим пропорцию:
Восходящий анализ проиллюстрировал процесс сведения задачи к подзадачам.
Идея этого метода: для того чтобы А было верно, достаточно, чтобы было верно В и так далее.
Преимущество этого метода в процессе изучения математики: а) восходящий анализ обеспечивает сознательное и самостоятельное отыскание метода доказательства теоремы самими учащимися; б) Способствует развитию логического мышления; в) обеспечивает осознанность, целенаправленность действий на каждом этапе доказательства; г) схема метода проста: что требуется доказать? Что для этого достаточно доказать?
III. в) Нисходящий анализ.
Задача. Доказать, что квадрат медианы, проведенной к катеты прямоугольного треугольника, сложенный с утроенным квадратом половины этого катета, равен квадрату гипотенузы.
Дано:
Доказать:
Док-во: рассмотрим
Получили второе неравенство. Но сказать, что этим самым задача решена, неверно. Нисходящий анализ приводит к синтетическому рассуждению. Для получения логического доказательства необходимо провести все рассуждения в обратном порядке.
IV. г) Анализ и синтез при решении геометрических задач на построение.
Пример: Построить прямоугольный треугольник по гипотенузе С и радиусу r вписанной в него окружности.
Анализ. Пусть задача решена сделаем эскиз.
треугольник по данным С,
Синтез: Строим
Задача. Построить четырехугольник, если даны все его четыре стороны и известно, что одна из диагоналей делит один из углов пополам.
Анализ. Пусть задача решена, сделаем эскиз.
Поиск проведем через синтез, т.е. исходя из того, что нам известно:
V. д) Анализ и синтез при решении текстовых задач.
Задача. Длина прямоугольного параллелепипеда 8м, ширина 6м, а высота 12 м. найдите сумму площадей его наибольшей и наименьшей граней.
Данная задача – арифметическая. Проанализируем ее. Что надо знать для того, чтобы найти требуемую сумму? – ТК она является прямоугольником, то достаточно знать его ширину и длину. Можем ли мы найти искомые площади?– Наименьшая грань – 6м и 8м, наибольшая грань – 8м и 12 м. Синтез в задаче – ее решение: 6∙8+8∙12=8∙18=144
Ответ: 144 м2.
Задача. В двух мешках вместе находится 140 кг муки. Если из первого мешка переложить во второй 12,5 % муки, находящейся в первом мешке, то в обоих мешках будет одинаковое количество муки. Сколько килограммов муки в каждом мешке?
При решении задач алгебраическим методом. Составление уравнения – анализ, решение полученной математической модели – синтез.