Смекни!
smekni.com

Информационные технологии как средство формирования пространственного воображения школьников при (стр. 13 из 14)


А теперь запишем определение новых понятий в тетрадях по теории и построим чертеж конуса.

Конической поверхностью называется поверхность, образованная отрезками, соединяющими каждую точку окружности с точкой перпендикуляра, проведенного к плоскости окружности через ее центр. Эти отрезки называются образующими конической поверхности.

Изображение конуса на чертеже (слайд 2)

Комментарий учителя к построению: изображением пространственной фигуры служит ее проекция на ту или иную плоскость. Одна и та же фигура допускает различные изображения. Обычно выбирается то из них, которое создает правильное представление о форме фигуры и наиболее удобно для исследования ее свойств. Здесь, граница круга - окружность - изображается на плоскости эллипсом.

Сообщает, что конус получается вращением прямоугольного треугольника вокруг одного из катетов (слайд 3)


- Ребята как вы думаете, что собой представляет развертка цилиндра? Показывает слайд 4.

- Дается определение сечения, и рассматривают различные сечения конуса: (слайды 5 -7)

1) Сечение, проходящее через ось конуса, называется осевым. Какую фигуру представляет это сечение? (равнобедренный треугольник);

2) Сечение, проходящее через вершину конуса но не ось, - треугольник. Какой вид у треугольника? Чем являются боковые стороны?

3) Сечение, перпендикулярное оси конуса, - круг, (S1). Как найти коэффициент подобия сечения и основания? Как по радиусу основания найти радиус сечения?

4) Сечение плоскостью, пересекающей все обра­зующие, - эллипс.(S2)

5) Сечение плоскостью, параллельной двум обра­зующим конуса, - гипербола (S3)

6) Сечение плоскостью, параллельной одной образующей, - парабола (S4)

- Вводит понятие касательной плоскости. (слайд 8)


Закрепление нового материала.

- Назвать две образующие конуса, сравнить их. Сделать вывод. (Добиться от учеников вывода равенства двух образующих конуса.)

- Назвать углы наклона образующих конуса к плоскости основания, сравнить их. (Доказательство равенства углов.)

- Каков угол между осью конуса и основанием. Почему?

- Каков вид треугольника АОР? (слайд 9)

- Каким способом можно получить конус?

4. Историческая справка

Исторически появление эллипса, параболы и гиперболы связано с изучением конических сечений математиками Древней Греции. Основной труд Апполония Пергского так и назывался - «Конические сечения» (III век до н.э.). Эти кривые интересны еще и тем, что траектория движения небесных тел происходит по одной из этих кривых. Это так же траектория движения космических ракет.

5. Усеченный конус.

Сегодня мы познакомимся еще с одной геометрической фигурой и ее свойствами. Посмотрите на экран, там вы видите модель конуса. Проведем секущую плоскость, перпендикулярно оси конуса (слайд 10). Эта плоскость разбивает наш конус на две части. Одна часть – это меньший конус, а другая называется усеченным конусом. А теперь изучим модель усеченного конуса (слайд 11).

6. Решение задач.

- А сейчас давайте начнем решать задачи по изученной теме. Сначала решим задачи на готовых чертежах (слайды 12-15).



- Далее выводится формула для вычисления площади боковой поверхности усеченного конуса.



7. Итог урока

- Объясните, какое тело называется конусом?

- Что такое образующая конуса?

- Радиус основания конуса 3см, высота 4см. Найти образующую.

Запишите домашнее задание П.184 - 186, №12, №19 [41, с. 335]. Спасибо за урок, до свидания.

Приложение 3

Конспект урока по теме «Сфера и шар»

Тема: Сфера. Шар (4 часа).

Тип урока: урок изучения нового материала.

Цели урока:

- формирование понятий сфера, шар и их элементов;

- выведение уравнения сферы, формул для вычисления площади поверхностей шара;

- рассмотрение типовых задач по изучаемой теме;

- способствовать развитию пространственного воображения и речи учащихся.

Задачи:

1. Познакомить учащихся с понятиями сфера, шар;

2. Научить учащихся выводить уравнение сферы и формулы для вычисления площади поверхностей шара;

3. Закрепить навык работы с данными формулами при решении типовых задач;

4. Работа на готовых чертежах;

5. Закрепить знания и умения учащихся по изучаемой теме.

Этапы урока:

1. Организационный момент.

2. Актуализация опорных знаний.

3. Изучение нового материала.

4. Закрепление нового материала.

5. Решение задач.

6. Итог урока.

Дидактические материалы и оборудование: Доска, мел, компьютер, проектор, учебник.

Ход урока

1. Организационный момент.

- Здравствуйте, садитесь.

Открываем тетради, записываем тему нашего урока «Конус». Сегодня на уроке мы введем понятия конической поверхности, конуса; рассмотрим типовые задачи по изучаемой теме.

2. Актуализация опорных знаний.

Перед тем, как изложить новый материал, необходимо проверить знания по теме «Круг. Окружность», «Цилиндр», « Конус», которые нам потребуются при изучении данной темы. В ходе фронтального опроса учащимся предлагается ответить на следующие вопросы:

1. Назовите знакомые вам фигуры вращения (круг, окружность, цилиндр, конус).

2. Какую фигуру образует отрезок АВ при вращении его вокруг точки А? (круг с центром в точке А и радиусом, равным отрезку АВ)

3. Какой многоугольник называется вписанным (описанным) в окружность (около окружности)?

4. Дайте определение цилиндра, конуса.

5. При вращении каких фигур получается цилиндр, конус?

6. Какие предметы окружающей остановки напоминают вам цилиндр?

7. Назовите и покажите основные элементы цилиндра, конуса.

3. Изучение новой темы.

Сегодня мы рассматриваем еще одну пространственную геометрическую фигуру, геометрическое тело - шар.

- Дает определение шара и его элементов, показывает слайд 1.

- Сфера может быть получена вращением полуокружности вокруг ее диаметра, а шар – вращением полукруга вокруг его диаметра (слайд 2).

- Выводится уравнение сферы (слайд 3).

- Рассматривает сечение шара плоскостью (слайды 4-5).




- Далее рассматривает взаимное расположение шара и плоскости (слайды 6-8).

- Затем рассказывает о касательной плоскости к шару (слайд 9).


- Далее выводится формула для вычисления площади поверхности шара.


4. Закрепление нового материала.

- Что называется сферой, радиусом сферы? Как может быть получена сфера?

- Что называется шаром? Как может быть получен шар?

- Что называется уравнением поверхности?

- Какой вид имеет уравнение сферы?

- Каково взаимное расположение шара и плоскости?

- Точки А и В принадлежат шару. Принадлежит ли этому шару любая точка отрезка АВ? (да)

- Могут ли две сферы с общим центром и неравными радиусами иметь общую касательную плоскость? (нет)

5. Решение задач.

1). Найти геометрическое место точек, удаленных от данной точки на расстояние, которое меньше или равно 10 см (шар радиусом 10 см).

2). Точки А и В лежат на сфере с центром

, а точка М лежит на отрезке АВ. Докажите, что если М – середина отрезка АВ, то
.

3). Сечение шара плоскостью имеет площадь 36

2). Радиус шара 10 м. Найти расстояние от центра шара до плоскости сечения.

4). На поверхности шара даны три точки, кратчайшее расстояние между которыми равно 6 см. Определить площадь сечения, проходящего через эти три точки.

5). В тетради построить чертеж фигуры, при вращении которой получится сфера и вписанный в нее цилиндр.

6). Даны точки А(-3; 1,5; -2) и В(3; -2,5; 2). Отрезок АВ является диаметром сферы.