Смекни!
smekni.com

Информационные технологии как средство формирования пространственного воображения школьников при (стр. 3 из 14)

Познавательная природа представлений раскрывается в том, что они являются промежуточным звеном при переходе от ощущения к мысли. Ясные и отчётливые представления о геометрических объектах, последовательно образованные в сознании обучаемых, являются прочной основой для усвоения научных знаний. Представление, как важный элемент познания, призвано связывать образы предметов и явлений со смыслом и содержанием понятия о них. Но, в свою очередь, формирование представлений требует овладения понятием, поскольку понятие определяет содержание образа. Пространственные представления по отношению к мышлению являются исходной базой, условием развития, но, в то же время, и формирование представлений требует предварительного овладения понятиями и фактами. Можно сказать, что процесс формирования пространственных представлений о геометрических объектах проходит на основе знаний о них [59].

На основе вышесказанного можно сделать вывод, что содержание пространственных представлений следует рассматривать как образ отраженного объекта или явления, в совокупности со знаниями об объекте, извлеченные в процессе его восприятия. Это результат пространственного воображения, которое сочетает в себе взаимосвязанные компоненты (пространственный и логический) мышления.

Итак, под пространственным представлением, формируемым в процессе обучения геометрии, будем понимать обобщенный образ геометрического объекта, складывающийся в результате переработки (анализа) информации о нем, поступающей через органы чувств.

Научное наследие выдающегося швейцарского ученого Ж. Пиаже уже не одно десятилетие вызывает интерес психологов всего мира. Его исследования, "посвященные развитию детского познания - восприятия и особенно мышления, - составляют, - по утверждению П.Я. Гальперина и Д.Б. Эльконина, - одно из самых значительных, если не самое значительное явление современной зарубежной психологии" [13, 596].

Признавая используемый Ж. Пиаже формально-логический подход в качестве возможного описания закономерностей развития мышления ребенка, многие отечественные и зарубежные ученые все же отмечают его ограниченность и пытаются рассмотреть ментальную деятельность как некую новую психическую реальность, образующуюся на определенных этапах развития (П.Я. Гальперин, В.В. Давыдов, Л.Ф. Обухова, Д.Б. Эльконин, М. Доналдсон, Р.В. Конелэнд). В частности, пытаясь объяснить психические механизмы, лежащие в основе знаменитых феноменов Ж. Пиаже, П.Я. Гальперин и Д.Б. Эльконин высказали гипотезу о том, что их причина лежит в отсутствии четкой последовательной дифференциации некоторых объективных характеристик предметов, таких как длина, форма, вес и т.д.

Следующий продуктивный шаг в этом направлении был сделан Н.И. Чуприковой [55, 56]. Ей удалось связать указанную гипотезу П.Я. Гальперина и Д.Б. Эльконина с исследованиями, утверждавшими, что, во-первых, дифференциация познавательных структур и процессов составляет релевантный компонент интеллектуального развития (Х. Вернер, Х.А. Уиткин) и, во-вторых, что способность ребенка дифференцировать различные признаки и отношения предметов есть стержневая линия при переходе от непосредственного чувственного познания к абстрактному мышлению (Г. Гегель, И.М. Сеченов, Дж. Миллер, Н.И. Чуприкова). Опираясь на эти и ряд других результатов теоретических и экспериментальных работ, Н.И. Чуприкова поставила задачу обосновать связь феноменов несохранения Ж. Пиаже с недостаточной дифференцированностью отражения различных свойств объектов. В процессе ее решения автором была выдвинута и подтверждена гипотеза, согласно которой за весьма разными, на первый взгляд, приемами формирования у детей, обладающих соответствующими возможностями, способности решать задачи на сохранение всегда лежит процесс выработки дифференцированного отражения различных свойств объектов [55, 56].

Согласно фактам, описанных Ж. Пиаже [43], С.Л. Рубинштейном [46], Н.Н. Поддьяковым [44], Ф.Н. Шемякиным [58], серии экспериментов, проведенных И.С. Якиманской [59] и под ее руководством [10] ребенок выделяет в окружающих его предметах пространственные характеристики дифференцированно.

Овладение ребенком математическими понятиями, а стало быть, и выделение им геометрических характеристик в окружающем пространстве идет путем дифференциации различных свойств двух и трехмерных объектов по их многочисленным признакам.

Применительно к познанию и овладению ребенком пространством Ж.Пиаже выделяет такие "качественные операции, структурирующие пространство; порядок пространственной преемственности и включение интервалов или расстояний; сохранение длины, поверхностей и т.п.; выработка системы координат, перспективы и сечения и т.д." [42, c.199]. К 15 годам человек уже обладает всеми выделенными Ж. Пиаже феноменами, и процесс дифференциации, как и развития, по мнению ученого, заканчивается.

Довольно полную и обширную феноменологию пространственного мышления удалось получить И.С. Якиманской и в исследованиях, выполненных под ее руководством. И.С. Якиманская и ее сотрудники выявили массу индивидуальных особенностей, описали множество различных признаков и характеристик процесса оперирования пространственными объектами. В частности, они обнаружили присущие отдельным испытуемым три типа оперирования пространственными образами. Их содержание отражено в разных видах задач, требующих: изменения пространственного положения созданного образа (I тип); изменения структуры созданного образа (II тип); длительного и неоднократного изменения и пространственного положения, и структуры (III тип) [10]. Однако в этих работах исследования были акцентированы на выявлении феноменов процесса оперирования пространственными образами и проблемах их формирования. Задача описания психологических механизмов развития этих особенностей и процессов создания образов и ориентации в пространстве посредством дифференциации и интеграции подструктур пространственного воображения не ставилась [10, 42].

Базисными для пространственного воображения являются основные подструктуры: топологическая, проективная, порядковая, метрическая и алгебраическая. С помощью первой из указанных подструктур - топологической - человек выделяет и оперирует такими гомеоморфными пространственными характеристиками, как непрерывность, компактность, связность, замкнутость образа. Проективная подструктура детерминирована феноменом толерантности (отношения сходства) и позволяет индивиду распознавать, представлять, оперировать и ориентироваться среди пространственных объектов или их графических изображений с любой точки отсчета; устанавливать сходство (соответствие) между пространственным объектом и его различными проекциями (параллельной, ортогональной, центральной) и т.д. При этом принципиальным является умение устанавливать соответствие не между различными проекциями одного объекта, а между объектом и его проекциями. Опираясь на порядковую подструктуру пространственного воображения, человеку удается вычленять свойства квазипорядка, линейного или частичного упорядочивания множества различных пространственных объектов, устанавливать отношения иерархии по различным основаниям: ближе - дальше, больше - меньше, ниже - выше, направо - налево и т.д. Метрическая подструктура акцентирует внимание на количественных преобразованиях и позволяет определять числовые значения и величины длин, углов, расстояний. Наконец, с помощью алгебраической подструктуры удается соблюдать законы композиции, устанавливать обратимость пространственных преобразований, "свертывать" их, заменять несколько операций одной [10, 26, 27].

Наряду с этими пятью базисными феноменами пространственного воображения выделяются четыре уровня развития пространственного воображения.

Так, овладение окружающим пространством на ментальном уровне проявляется у ребенка старше трех лет в вычленении топологических характеристик объектов. Оно выражается в рисовании на бумаге, песке, реализации в движении "бесконечных" непрерывных связных линий. Одним из любимых занятий становится хождение по лабиринтам, которыми изобилует литература, адресованная дошкольнику. Здесь он с огромным удовольствием сначала графически, а затем и в воображении отыскивает непрерывный, компактный, связный путь движения.

Далее ребенок начинает дифференцировать окружающее пространство, не только отражая топологические характеристики (непрерывность, компактность, замкнутость и т.д.), но и вычленяя толерантность пространственных объектов, их изображений. Это проявляется в быстром и легком установлении соответствия между похожими предметами, сходными изображениями, предметами и их изображениями, выполненными в различных проекциях и ракурсах. Наличие этого умения свидетельствует о появлении у него проективной подструктуры [10, 25, 27].

Дифференциация пространственного воображения у различных индивидов определяется уровнем развития этого ментального процесса. Как оказалось, у людей с I уровнем развития в пространственном воображении существует лишь одна слаборазвитая подструктура, которую, тем не менее, можно считать доминирующей уже в силу того, что остальные отсутствуют. Это проявляется в том, что в окружающей реальной или воображаемой ситуации они не замечают или с большим трудом вычленяют и отделяют одни свойства и отношения объектов (например, топологические) от других (например, метрических) даже при явной необходимости этого.

II уровень характеризуется тем, что в пространственном воображении наряду с доминирующей существуют и другие (может быть, и все) подструктуры, но выражены они все еще слабо.

Более высоким является III уровень развития данного вида воображения, когда сформированы все подструктуры, но у каждого человека имеется наиболее ярко выраженная - ведущая, которая единственно устойчива и индивидуальна. Характерной чертой внешнего поведения этих индивидов является их постоянное стремление к дифференциации и вычленению в реальной или воображаемой ситуации и у объектов, прежде всего тех свойств и отношений, которые соответствуют своей ведущей подструктуре. Вместе с тем эти испытуемые способны вычленять и оперировать и иными отношениями (топологическими, порядковыми и т.д.), но это происходит лишь при явном требовании [10, 27].