7. Целенаправленность пространственного мышления характеризуется стремлением осуществлять разумный выбор действий при решении задач, постоянно ориентируясь на поставленную цель, в стремлении отыскать кратчайший путь ее решения. Наличие этого качества важно при поиске плана решения задачи, при извлечении дополнительной информации из наглядности.
Опираясь на исследования педагогов, психологов и методистов, собственный опыт преподавания стереометрии, нами выделены и обобщены критерии сформированности пространственного воображения школьников 10-11-х классов:
1. Владение мыслительными операциями: анализ, синтез, сравнение, обобщение, абстрагирование и т.д.
2. Сформированность следующих умений:
- сопоставлять различные изображения образа геометрической конфигурации (оперировать различной наглядностью);
- анализировать образ геометрической конфигурации;
- синтезировать образ геометрической конфигурации;
- вычленять форму образа геометрического объекта;
- определять взаимное расположение данного образа геометрического объекта относительно других образов;
- определять взаимное расположение отдельных элементов образа геометрического объекта;
- конструировать образы новых геометрических конфигураций и воспроизводить их с помощью модели, рисунка, чертежа или словесного описания.
На основе разработанных нами критериев и показателей сформированности пространственного воображения школьников с использованием информационных технологий, анализа педагогической, психологической и методической литературы, собственного опыта, возможностей использования информационных технологий, нами разработана дидактическая модель формирования пространственного воображения учащихся при изучении школьного курса стереометрии с использованием информационных технологий (рис. 1).
Задания среза можно представить следующим образом.
1. Какие из предложенных на рисунке фигур являются разверткой правильной 6-тиугольной призмы? (Ответ а))
2. В кубе ABCDEFGH точки M, N и K расположены на ребрах EF, CG, AD соответственно так, что EM = MF, CN : NG = 1 : 2, AK : KD = 1 : 3. Построить сечение куба плоскостью MNK.
3. Установите вид параллелепипеда, если а) все грани равны; б) все грани равновелики; в) все его диагонали равны; г) два диагональных сечения перпендикулярны основанию; д) две его смежные грани - квадраты; е) перпендикулярное сечение к каждому ребру является прямоугольником.
4. В основании наклонной призмы правильный пятиугольник. Сколько граней у данной призмы? (5) Какими геометрическими фигурами являются ее грани? (параллелограммами) Могут ли среди боковых граней быть прямоугольники? (да) Изобразите данную призму.
5. Докажите, что центры граней куба являются вершинами октаэдра, а центры граней октаэдра являются вершинами куба.
6. Площади двух боковых граней наклонной треугольной призмы равны 40 и 30 см2. Угол между этими гранями прямой. Найдите площадь боковой поверхности призмы.
7. Дан прямоугольный параллелепипед ABCDA1B1C1D1 (AB = BC) как провести на его поверхности кратчайшую линию, соединяющую вершины В и D1 (ответ может быть получен при помощи развертки двух смежных граней)?
Констатирующий срез показал, что не все рассматриваемые умения сформированы на данном этапе у школьников.
· с первым заданием справились 21 человек, что составляет 75%, частично справились 15%, не справились 10%;
· со вторым заданием справились 38% учащихся, 18% частично справились, а 44% не справились с заданием;
· с третьим заданием 55% полностью справились, 20% справились частично, 25% не справились;
· с четвертым заданием 40% справились, 21% справились частично, 39% не справились;
· с пятым заданием 43% справились, 27% справились частично, 30% не справились;
· с шестым заданием 48% справились, 27% справились частично, 25% не справились;
· с седьмым заданием 56% справились, 27% справились частично, 17% не справились (рис. 2).
Под термином «умение сформировано полностью» в данном случае понимается выполнение задания с обоснованием и пояснением ответа, а также хода решения. Под «умение сформировано частично» понимается выполнение задания с нечетким пояснением, либо с пропуском некоторых промежуточных рассуждений в ходе решения. Под «умение не сформировано» понимается невыполнение задания. Чаще всего ошибки возникали в заданиях второго, третьего и седьмого типов из-за определенной неподготовленности к решению такого типа заданий, а также из-за недостаточных теоретических знаний.
Для сравнения результатов констатирующего среза в качестве контрольной группы была взята параллельная группа ТП - 1. После проведенного аналогичного среза были получены следующие результаты.
· с первым заданием справились 20 человек, что составляет 72%, частично справились 16%, не справились 12%;
· со вторым заданием полностью справились 40% учащихся, 18% справились частично, а 42% не справились с заданием;
· с третьим заданием 57% полностью справились, 23% справились частично, 20% не справились;
· с четвертым заданием 47% справились, 15% справились частично, 38% не справились;
· с пятым заданием 40% справились, 27% справились частично, 33% не справились;
· с шестым заданием 45% справились, 30% справились частично, 25% не справились;
· с седьмым заданием 60% справились, 23% справились частично, 17% не справились (рис. 3).
Как показывают полученные данные и в контрольной группе, и в экспериментальной результаты оказались практически одинаковыми. Но также результаты показали, что большинство ошибок было связано с недостаточной сформированностью пространственного воображения.
Таким образом, в данном параграфе представлена организация проведения разработанной методики, констатирующий срез, его результаты. Далее, более подробно остановимся на анализе каждого занятия проведенных уроков и выделим основные затруднения школьников. Этому посвящен следующий параграф.
На втором этапе эксперимента – формирующем – уточнялась гипотеза исследования, рассматривались основные положения курса геометрии в рамках компьютерного обучений; были разработаны входной и выходной контроли для определения уровня знаний, умений и навыков в начале и конце изучаемых тем с целью оценки степени усвоения знаний в процессе обучения и выяснения причин возникающих трудностей.
Данный этап был направлен на формирование и развитие пространственного воображения школьников с использованием информационных технологий.
Эксперимент по формированию пространственного воображения обучения стереометрии с использованием информационных технологий было решено провести на первом курсе Соликамского горно-химического техникума на примере разделов «Цилиндр», «Конус», «Сфера. Шар».
Обучение происходило по разработанной нами методике.
Одним из основных условий формирования пространственных представлений в процессе обучения стереометрии является использование упражнений, ориентированных на формирование и развитие комплекса умений, составляющих содержание пространственных представлений и характеризующих их сформированность. Но не все упражнения можно считать такими, а лишь те, которые требуют оперирования ранее созданными пространственными представлениями, в которых происходит включение пространственных представлений в новые связи, помещение их в новые условия, определяемые условием задачи. В ходе пространственных представлений обучаемый определяет порядок действий, пытается в уме выполнить некоторые из знакомых ему операций, рассмотреть возможные варианты решения задачи, прогнозировать результат. Каждый геометрический образ имеет определенную структуру, позволяющую зрительно выделить и проанализировать его логический «фундамент».
Нами выделены основные типы упражнений, ориентированные на формирование и развитие пространственных представлений при обучении геометрии:
- упражнения на исследование свойств геометрических объектов (узнавание);
- упражнения на изображение геометрических конфигураций (воспроизведение);
- упражнения на преобразование образов геометрических конфигураций (оперирование);
- упражнения на конструирование новых образов геометрических конфигураций.
Разработка данной типологии основана на видах деятельности, составляющих содержание процесса формирования и развития пространственных представлений при обучении (узнавание, воспроизведение, оперирование и конструирование пространственных представлений). Необходимо отметить, что в каждой из этих групп должны присутствовать упражнения, решение которых требует использования средств наглядности (моделей, рисунков, чертежей и т.п.) и упражнения, заданные словесным описанием и решаемые в воображении.
I. Упражнения на исследование свойств геометрических объектов