Министерство образования Республики Беларусь
Учреждение образования
«Гомельский государственный университет им. Ф. Скорины»
Математический факультет
Кафедра МПМ
Реферат
Измерение геометрических величин в курсе средней школы
Исполнитель: студентка
группы Горошко А.Ю.
Научный руководитель:
Канд. физ-мат. наук,
доцент Лебедева М.Т.
Гомель 2007
Содержание
Введение
1. Образовательные цели изучения темы в школьном курсе математики. Общее понятие величины. Пример построения теории величин
2. Методика изучения геометрических величин. Теория измерения длин отрезков
Заключение
Литература
Измерение геометрических величин – одна из основных линий школьного курса геометрии, которая знакомит учащихся с важными идеями, понятиями и методами метрической геометрии. Измерение геометрических величин связано с идеей аксиоматического метода, теорией действительного числа, методами математического анализа. Знакомство учащихся с различными формулами расширяет возможности применения в школьном курсе геометрии аналитического метода. Главная особенность изложения материала – сочетание различных математических идей и методов, например, в теме «Площади фигур» используется традиционно-синтетический и аналитический методы.
Программа 1981г. (базисная) следующим образом определяет содержание темы по классам:
· -начальная школа: примеры величин (длина, площадь, масса, стоимость); единицы их измерения; примеры зависимостей между величинами(путем, скоростью и временем; площадью и длинами сторон прямоугольника и т. д.);
· -в 5-6 классах: примеры величин(длина, площадь, объем, градусная мера угла); единицы измерения длин, площадей, объемов и углов; массу тел; площадь прямоугольника, прямоугольного треугольника, объем прямоугольного параллелепипеда, формулы длины окружности и площади круга.
· -в 7-9 классах: понятие о площади, основные свойства площади, площадь прямоугольника, треугольника, параллелограмма, трапеции, отношение площадей подобных фигур, площадь круга и его частей, решение задач на вычисление неизвестных длин, углов и площадей;
· -в 10-11 классах: понятие об объеме, основные свойства объема, объемы многоугольников: прямоугольного параллелепипеда, призмы, пирамиды; объемы тел вращения: цилиндра, конуса, шара; площади сферы.
В этой же программе предъявляются следующие требования к подготовке учащихся в области геометрических величин:
-учащиеся начальной школы должны научится измерять простейшие величины и выполнять над ними соответствующие действия. Программа рекомендует основное внимание сосредоточить на выработке прочных навыков измерения величин, на овладение наиболее распространенными на практике единицами измерения величин;
-учащимся 5-6 классов необходимо приобрести навыки измерения геометрических величин, научиться решать простейшие задачи на нахождение длин, площадей и объемов;
-учащиеся 7-9 классов должны приобрести навыки измерения и вычисления длин, углов и площадей, применяемые для решения разнообразных геометрических и практических задач. Учащиеся должны также решать несложные задачи на нахождение величин, не сводящиеся к непосредственному применению одной формулы или теоремы.
-учащиеся 10-11 классов должны уметь решать несложные задачи на нахождение длин, углов, площадей и объемов(в том числе задачи с практическим содержанием). При этом требуется не только умение довести решение до желаемого результата, но и умен7ие перевести практическую задачу на язык геометрии и решить ее, приводя достаточно полное обоснование.
Величина – одно из основных понятий математики, возникшее в древности и подвергшееся в процессе развития математики ряду обобщений.
Общее понятие величины – непосредственное обобщение конкретных величин (длинны, площади, объема, массы и т.д.),свойства которых сформулированы еще в «началах» Евклида. Впоследствии эта величина получила название «положительной скалярной величины», чтобы отличить ее от более общих понятий величины (векторной и др.).
Интуитивно мы представляем себе, что величина может быть больше или меньше, две однородные величины могут складываться, ее можно измерить, понимая под этим сравнение данной величины с однородной, принятой за единицу измерения. Однако сформулировать это понятие в математических терминах не так то просто.
В обучении школьников используются … величины, изучение которых хорошо иллюстрирует общее понятии величины при соответствующей постановке обучения.
Рассмотрим пример построения теории величины.
Пусть имеем бесконечное множество В с введенным в нем отношением < (меньше) и операцией + (сложение), которые назовем системой однородных величин, элементы этого множества – однородные величины. Эта система характеризуется свойствами, которые можно принять за аксиомы:
1. a, b: a < b a = b b < a, причем имеет место одно из трех соотношений;
2. a, b, с: a < b b < с a < с - транзитивность ”<”
3. a, b: с: a + b = с – замкнутость B относительно сложения;
4. a, b: a + b = b + a – коммутативность;
5. a, b, с: a + (b + с) = (a + b)+с – ассоциативность сложения;
6. a, b: a + b > a – монотонность сложения;
7. a, b ^ a > b =>!С: b + с = a – возможность вычисления: a – b = c;
8. а n b: nb = a – возможность деления величины на натуральное число: a:n = b;
9. a, b n N: a < nb – аксиома Архимеда;
10. пусть даны две последовательности величин из В:
a1<a2<…<…; и …<…<b2<b1 причем для любой величины «с» при достаточно большом номере n:
bn-an<c,
т.е. члены последовательности {an} и {bn} неограниченно приближаются друг к другу. В таком случае существует единственная величина х € В, к4оторая больше всех an и меньше всех bn – аксиома непрерывности.
Если какую – либо величину с € В принять за единицу измерения, то всякая величина системы В однозначно представима в виде: a = άc, где ά – положительное действительное число: ά € R, (ά>0).
Меру а при единице измерения “с” обозначим через m(a), т.е. если a = άc, то m(a) = ά.
Мера обладает следующими свойствами:
1. m – функция с областью определения В и областью значения R, т.е. “m” отображает В на R;
2. монотонность меры;
3. аддитивность меры;
4. мера единицы измерения равна 1.
Перечисленные свойства полностью характеризуют меру “m”, существует единственная функция: В -> R, обладающее этими свойствами, а именно мера m(a) величины а при единице измерения с.
Если с заменить через с’, то получается новая мера: m’(a) = a’, причем так как m(a) = ά, то связь между двумя мерами выразиться так: m’(a) = a-1m(a).
Перечисленные свойства общего понятия величины и меры величины находят применения (в явном или не явном виде) при изучении конкретных геометрических величин (длины, площади и объема) в школе.
Измерение геометрических величин (длины, площади, объема) изучается в школьном курсе дважды, на двух различных уровнях.
На первом, экспериментальном, уровне в начальных классах учатся измерять длины отрезков, площади простейших плоских фигур и объёмы простейших пространственных тел.На этом уровне не дается определений длины, площади и объема. Цель состоит в том, чтобы создать у учащихся ясные интуитивные понятия.
Методика изучения геометрической величины на этом уровне достаточно широко освещена в литературе.
Остановимся на некоторых вопросах методики изучения геометрической величины на втором уровне.
‘Школьная’ теория измерения геометрических величин должна строиться с сохранением некоторой общей схемы. Это относится прежде всего к определения понятий: «длины», «площадь», «объем».Повторение одной и той же схемы определения способствует обобщению, формирования такого представления: из аналогии вытекает, что эти понятия относятся к одному более общему понятию, связывающему их. Раскрытие этой связи в процессе обучения способствует более глубокому пониманию и прочности знаний. Каждое из трёх понятий определятся как вещественное число, удовлетворяющее условиям, которые характеризуют общие понятия меры множества.
Например, теория измерения длины отрезков может быть построена по такой схеме:
· Определение длины отрезка как вещественного числа, удовлетворяющего условиям 1)-4) понятия меры;
· Описание процедуры измерения отрезка;
· Установление существования и единственности длины отрезка при данном выборе единицы измерения с использованием аксиомы Архимеда;
· Установления существования отрезка, длина которого при данном выборе единицы измерения ровна любому, наперед заданному положительному числу(с использованием аксиомы Кантора, геометрического эквивалента аксиомы непрерывности).
Разъяснение учащимся старших классов сущности аксиомы Кантора не представляет особых трудностей. Это можно сделать именно в связи с установлением свойства 4.
Случай, когда на перед заданное число рационально, аксиома Кантора применяется, а используется элементарное построение. Если это число иррационально, например х=2,313113111311113…, то поступаем так: введем на прямой систему координат(начало 0, направления единицу измерения).Мы можем построить точки А1 и B1, где А1 = 2,3; B1 = 2,4 – приближения с точностью 0,1. Если существует точка М, то ОА1<OM<OB1, т.е. точка М лежит между А1 и B1, т. е. внутри отрезка А1B1. Мы можем найти A2 = 2,31 и B2 = 2,32 и т.д.
Неограниченно продолжая этот процесс, мы получаем, что если точка М существует, то она лежит внутри каждого из отрезков бесконечной последовательности: A1B1, A2B2,…,AnBn,…, обладающей следующими свойствами: