Смекни!
smekni.com

Методика изучения элементов математического моделирования в курсе математики 5-6 классов (стр. 3 из 13)

3. Знаковое моделирование, при котором моделями служат знаковые образования какого-либо вида: схемы, графики, чертежи, формулы, графы, слова и предложения в некотором алфавите (естественного или искусственного языка)

4. Со знаковым тесно связано мысленное моделирование, при котором модели приобретают мысленно наглядный характер. Примером может в данном случае служить модель атома, предложенная в свое время Бором.

5. Наконец, особым видом моделирования является включение в эксперимент не самого объекта, а его модели, в силу чего последний приобретает характер модельного эксперимента. Этот вид моделирования свидетельствует о том, что нет жесткой грани между методами эмпирического и теоретического познания.

1.2. Математическая модель. Математическое моделирование

Математическое моделирование — частный случай моделирования. Является важнейшим видом знакового моделирования и осуществляется средствами языка математики. Знаковые образования и их элементы всегда рассматриваются вместе с определенными преобразованиями, операциями над ними, которые выполняет человек или машина (преобразования математических, логических, химических формул и т. п.).

Понятия «математическая модель» и «моделирование» широко используются в науке и на производстве. Роль знаковых моделей особенно возросла с расширением масштабов применения ЭВМ при построении знаковых моделей. Современная форма «материальной реализации» знакового (прежде всего, математического) моделирования - это моделирование на цифровых электронных вычислительных машинах, универсальных и специализированных.

Математическое моделирование предполагает использование в качестве специфического средства исследования оригинала его математическую модель, изучение которой дает новую информацию об объекте познания, его закономерностях (Н.П. Бусленко, Б. А. Глинский, Б.В. Гнеденко, Л.Д. Кудрявцев, И.Б. Новик, Г.И. Рузавин, К.А. Рыбников, В.А. Штофф). Предметом исследования при математическом моделировании является система «оригинал – математическая модель», где системообразующей связью выступает изоморфизм структур оригинала и модели. Структура служит инвариантным аспектом системы, раскрывающим механизм ее функционирования (Н.Ф. Овчинников) [30].

Известно, что для математического исследования процессов и явлений, реально происходящих в действительности, надо суметь описать их на языке математики, то есть построить математическую модель процесса, явления. Математические модели и являются объектами непосредственного математического исследования.

Математической моделью называют описание какого-либо реального процесса или некоторой исследуемой ситуации на языке математических понятий, формул и отношений.

Математическая модель – это упрощенный вариант действительности, используемый для изучения ее ключевых свойств. Математическая модель, основанная на некотором упрощении, идеализации, не тождественна объекту, а является его приближенным отражением. Однако благодаря замене реального объекта соответствующей ему моделью появляется возможность сформулировать задачу его изучения как математическую и воспользоваться для анализа универсальным математическим аппаратом, который не зависит от конкретной природы объекта.

Математической моделью, с формальной точки зрения, можно назвать любую совокупность элементов и связывающих их операций. С содержательной точки зрения интересны модели, являющиеся изоморфным отображением реальных или реализуемых объектов, процессов и явлений.

С математическими моделями тесно связан математический метод познания отображаемых моделью объектов – метод математического моделирования.

Соотношение между элементами a, b и c, выражаемое формулой

, - это математическая модель. Она изоморфно отображает операцию объединения двух «куч камней» с их числами a и b в общую «кучу камней», которых окажется
. В этом смысле операция сложения изоморфна этому слиянию.

Этот пример поясняет общий математический метод познания. Он состоит в построении для объекта, процесса или явления изоморфной математической модели, изучении этой математической модели и переносе в силу изоморфизма результатов, полученных для модели, на исходный объект [10]. Другими словами, метод математического моделирования заключается в том, что для исследования какого-либо объекта выбирают или строят другой объект, в каком-то отношении подобный исследуемому. Построенный или выбранный объект изучают и с его помощью решают исследуемые задачи, а затем результаты решения этих задач переносят на первоначальное явление или объект.

Математическое моделирование – приближенное описание какого-либо класса явлений внешнего мира, выраженное с помощью математической символики. Это мощный метод познания внешнего мира, а также прогнозирования и управления [23].

Математическое моделирование расширяет творческие возможности специалиста в решении целого ряда профессиональных задач, существенно изменяет его профессиональную подвижность. Современному специалисту следует «хорошо знать» математику, то есть не просто уметь использовать ее для различных расчетно-вычислительных операций, а понимать математические методы исследования и их возможности. Только понимание сущности математического моделирования позволяет адекватно использовать этот метод в профессиональной деятельности.

1.3. Математическое моделирование в школе

Развитие у учащихся правильных представлений о природе математики и отражении математической наукой явлений и процессов реального мира является программным требованием к обучению математике. Доминирующим средством реализации этой программной цели является метод математического моделирования.

Этот метод имеет своей основой моделирование (математическое и предметное). Применительно к обучению математике воспользуемся определением моделирования, которое предлагает И. Г. Обойщикова, и будем понимать под моделированием обобщенное интеллектуальное умение учащихся, состоящее в замене математических объектов, их отношений, способов деятельности моделями в виде изображений отрезками, числовыми лучами, схемами, значками [26].

Для моделирования привлекаются различные математические объекты: числовые формулы, числовые таблицы, буквенные формулы, функции, уравнения алгебраические или дифференциальные и их системы, неравенства, системы неравенств (а также неравенств и уравнений), ряды, геометрические фигуры, разнообразные графосхемы, диаграммы Венна, графы.

Математическое моделирование находит применение при решении многих сюжетных задач. Уже уравнение, составленное по условию задачи, является ее алгебраической моделью. Моделированию, особенно алгебраическому и аналитическому, следует уделить в школе должное внимание, так как математиче­ские модели используются для решения (или хотя бы облегчения решения) сюжетных задач. Кроме того, при построении модели используется такие операции мышления, как анализ через синтез, сравнение, классификация, обобщение, которые являются операциями мышления, и способствует его развитию. Составление математической модели задачи, перевод задачи на язык математики исподволь готовит учащихся к моделированию реальных процессов и явлений в их будущей деятельности.

При решении сюжетных задач особенно часто ис­пользуются их алгебраические и аналитические модели. Такой моделью может быть функция, описывающая явление или процесс, уравнение, система уравнений, неравенство, систе­ма неравенств, система уравнений и неравенств и др. При составлении модели задача, таким образом, переводится на язык алгеб­ры или математического анализа.

Рассмотрим несколько примеров математических моделей.

Задача 1. Турист проехал 2200 км, причем на теплоходе проехал вдвое больше, чем на автомобиле, а на поезде в 4 раза больше, чем на теплоходе. Сколько километров проехал турист отдельно на каждом виде транспорта?

Решение. Примем расстояние, которое проехал турист на автомобиле за x км. Известно, что на теплоходе проехал вдвое больше, чем на автомобиле, то есть 2x км. На поезде проехал в 4 раза больше, чем на теплоходе, то есть

.

Весь путь – это сумма расстояний, которые проехал турист на каждом из видов транспорта и он равен 2200 км. Получим следующее уравнение:

- это и есть математическая модель данной задачи.

Задача 2. На школьной математической олимпиаде было предложено решить 6 задач. За каждую решенную задачу засчитывалось 10 очков, а за нерешенную снималось 3 очка. В следующий тур выходили ученики, набравшие не менее 30 очков. Сколько задач нужно было решить, чтобы попасть в следующий тур олимпиады? (См. № 151, [18]).

Решение. Пусть ученик должен решить х задач. Тогда за решенные задачи он получит 10х очков, а за 6-х нерешенных задач у него снимут 3(6-х) очков. Ученик может получить 10х-3(6-х) очков (все переменные выражены через выбранное х и значения других величин, заданных в задаче). По условию задачи

и
.

Моделью задачи служит система неравенств

.

Далее в качестве примера рассмотрим задачу математического анализа на нахождение экстремума. Надо заметить, что аналитической моделью задачи на наибольшее (наименьшее) значение является функция одного переменного с областью ее задания. Обычно областью задания является замкнутый промежуток.