Задача 3. Кусок проволоки длиной 48 м сгибают так, чтобы образовался прямоугольник. Какую длину должны иметь стороны прямоугольника, чтобы его площадь была наибольшей? (См. № 313, [2]).
Решение. Требуется найти размеры прямоугольника с наибольшей площадью. Обозначим за a – длину прямоугольника, тогда ширина равна
Отметим, что в общем случае процесс моделирования состоит из следующих этапов:
1 этап. Постановка задачи и определение свойств оригинала, подлежащих исследованию.
2 этап. Констатация затруднительности или невозможности исследования оригинала.
3 этап. Выбор модели, достаточно хорошо фиксирующей существенные свойства оригинала и легко поддающейся исследованию.
4 этап. Исследование модели в соответствии с поставленной задачей.
5 этап. Перенос результатов исследования модели на оригинал.
6 этап. Проверка этих результатов.
На сегодняшний день наиболее распространенной является трехэтапная схема процесса математического моделирования:
1) перевод предложенной задачи с естественного языка на язык математических терминов, то есть построение математической модели задачи (формализация);
2) решение задачи в рамках математической теории (решение внутри модели);
3) перевод полученного результата (математического решения) на язык, на котором была сформулирована исходная задача (интерпретация полученного решения).
Наиболее ответственным и сложным является первый этап – само построение математической модели. Оно осуществляется логическим путем на основе глубокого анализа изучаемого явления (процесса) и требует умения описать явление (процесс) на языке математики.
В свою очередь, в процессе построения модели можно выделить несколько шагов.
Первый шаг – индуктивный: это отбор наблюдений, относящихся к тому процессу, который предстоит моделировать. Этот этап состоит в формулировке проблемы, то есть в принятии решения относительно того, что следует принимать во внимание, а чем можно пренебречь.
Второй шаг заключается в переходе от определения проблемы к собственно построению неформальной модели. Неформальная модель – это такое описание процесса, которое способно объяснить отобранные нами наблюдения, но при этом определено недостаточно строго, и нельзя с точностью проверить степень логической взаимосвязанности в нем свойств. На этой стадии рассматриваются целый ряд наборов неформальных допущений, способных объяснить одни и те же данные; тем самым рассматриваются несколько потенциальных моделей и решается, какая из этих моделей лучше всего отображает изучаемый процесс. Иначе говоря, ищутся различные способы установления логического соответствия между моделью и реальным миром.
Третий шаг – это перевод неформальной модели в математическую модель. Такой перевод включает в себя рассмотрение словесного описания неформальной модели и поиск подходящей математической структуры, способной отобразить изучаемые процессы. Это самый сложный этап во всем процессе моделирования. Стадия перевода может таить в себе две опасности. Во-первых, неформальные модели имеют тенденцию быть неоднозначными, и обычно существует несколько способов перевода неформальной модели в математическую (при этом альтернативные математические модели могут иметь совершенно различный смысл). На самом деле это одна из главных причин, изначально толкающих к применению математических моделей: язык математики лишен двусмысленностей и более точен, чем естественный язык, он позволяет исследовать скрытый смысл тончайших различий в формулировках, который плохо доступен исследованию посредством естественного языка.
Следующий этап – этап решения задачи в рамках математической теории – можно еще назвать этапом математической обработки формальной модели. Он является решающим в математическом моделировании. Именно здесь применяется весь арсенал математических методов – логических, алгебраических, геометрических и т. д. – для формального вывода нетривиальных следствий из исходных допущений модели. На стадии математической обработки обычно – вне зависимости от сути задачи – имеют дело с чистыми абстракциями и используют одинаковые математические средства. Этот этап представляет собой дедуктивное ядро моделирования.
На последнем этапе моделирования полученные выводы проходят через еще один процесс перевода – на сей раз с языка математики обратно на естественный язык.
Рассмотрим на примере реализацию всех этапов процесса математического моделирования.
Задача 1. Два автомобиля выехали одновременно из пункта А в пункт В, расстояние между которыми 540 км. Первый автомобиль ехал со скоростью, на 10 км/ч большей, чем второй, и прибыл в пункт В на 45 мин раньше второго. Найдите скорость каждого автомобиля (см. № 218, [1]).
I этап. Формализация. Построим математическую модель задачи.
Обозначим за x км/ч – скорость второго автомобиля, тогда скорость первого автомобиля равна (x+10) км/ч.
Известно, что второй автомобиль потратил на путь на 45 мин больше, чем первый.
II этап. Внутримодельное решение.
Перенесем все слагаемые в одну часть
Приведем слагаемые к общему знаменателю
Дробь равна нулю тогда и только тогда, когда числитель равен нулю, а знаменатель не равен нулю. Получим следующую систему:
Получили, что
III этап. Интерпретация. Переведем результат с математического языка на язык исходной задачи.
Так скорость автомобиля не может быть отрицательным числом, то условию задачи соответствует только один корень
Задача 2. Группа студентов решила купить магнитофон ценой от 170 до 195 долларов. В последний момент двое отказались участвовать в покупке, поэтому каждому из оставшихся пришлось внести на 1 доллар больше. Сколько стоил магнитофон?
Решение.
I этап. Формализация. Построим математическую модель задачи. Пусть х - число студентов в группе, у долларов – величина первоначально предлагаемого взноса. Тогда стоимость магнитофона
Математическая модель построена.
II этап. Внутримодельное решение. Рассмотрим систему, состоящую из уравнения и неравенства
В уравнении раскроем скобки и приведем подобные. Получим следующую систему
Из уравнения выразим y,
III этап. Интерпретация. Переведем результат с математического языка на язык исходной задачи. Магнитофон стоил 180 долларов.
Задача 3. Окно имеет форму прямоугольника, завершенного сверху полукругом. Укажите такие размеры окна, чтобы при данном периметре l оно пропускало больше света (см. № 156, [18]).