Смекни!
smekni.com

Методика изучения элементов математического моделирования в курсе математики 5-6 классов (стр. 9 из 13)

Обучение замене исходных терминов может происходить при формировании понятий. В анализируемых учебниках [11 – 15] такими математическими эквивалентами являются понятия «прямоугольник», в частности, «квадрат», «прямоугольный параллелепипед» (в частном случае «куб»), «окружность», «сфера». В заданиях, предложенных авторами учебника, всегда наряду с исходным термином указывается его математический эквивалент, что по нашему мнению является целесообразным. В тексте учебника встречаются следующие задачи.

Понятие «прямоугольник»

· Площадь баскетбольной площадки прямоугольной формы а м2, а длина 20 м. Какова ее ширина? (Cм. № 16 (1), [11]).

· На рисунке показан план земельного участка и указаны его размеры. Найди площадь этого участка, и выразили ее в арах. Какова длина прямоугольника, имеющего такую же площадь и ширину 45 м? (Cм. № 57, [11]).

· Переведи условие задачи на математический язык:
Под строительную площадку отвели прямоугольный участок, длина которого на 25 м больше его ширины. При утверждении плана застройки длину участка увеличили на 5 м, а ширину – на 4 м, в результате площадь участка увеличилась на 300 м2. Какова площадь образовавшейся строительной площадки? (Cм. № 271 (2), [12]).

· Построй математическую модель задачи и найди ответ методом перебора:
Прямоугольный газон обнесен изгородью, длина которой 30 м. Площадь газона 56 м2. Найди длины сторон газона, если известно, что они выражаются натуральными числами (см. № 333(3), [11]).

Понятие «параллелепипед»

Прямоугольный параллелепипед является математическим эквивалентом «аквариума», «печи», «ящика», «бассейна». Например.

· Из фанеры требуется сделать открытый ящик, имеющий форму прямоугольного параллелепипеда с измерениями 40 см, 20 см и 15 см. Сколько фанеры потребуется для изготовления ящика? Какова будет его вместимость? (Cм. № 272, [11]).

· Из жести сделали бак без крышки. Он имеет форму куба с длиной ребра 8 дм. Бак надо покрасить снаружи и изнутри. Какую площадь надо покрасить? Какова вместимость бака? (Cм. № 712, [11]).

· Чтобы сделать бассейн, в земле выкопали котлован в форме прямоугольного параллелепипеда длиной 25 м, шириной 6 м и глубиной 3 м. Сколько кубических метров земли пришлось вынуть? (Cм. № 280 (1), [11]).

· Имеется два аквариума с измерениями 45´32´50 см и 50´32´45 см.

а) На изготовление какого из двух аквариумов потребовалось больше стекла?

б) Аквариумы заполнили водой так, что уровень воды в первом аквариуме ниже верхнего края на 10 см, а во втором – на 5 см. В каком аквариуме больше воды? (Cм. № 547, [15]).

Понятия «окружность» и «круг»

При изучении окружности, круга и их свойств в учебнике используются задачи, в которых используются такие термины как «окружность колеса», «обороты колеса», «арена цирка», «циферблат часов», «беговая дорожка», «экватор Земли».

· Великий древнегреческий математик Архимед (III в. до н.э.) установил, что длина окружности примерно в 3

раза больше ее диаметра. Пользуясь этим результатом, реши задачу: Какова длина беговой дорожки ипподрома, имеющей форму круга радиусом
км? (Cм. № 307(1), [12]).

· Длина экватора Земли равна примерно 40000 км, а ее диаметр составляет

длины экватора. Чему равен диаметр Земли? (Cм. № 488, [12]).

· Сколько оборотов сделает колесо на участке пути в 1,2 км, если диаметр колеса равен 0,8 м? Число p округли до целых (см. № 549 (2), [15]).

· Чему равна площадь циферблата часов, если длина минутной стрелки равна 4,5 см. Число p округли до целых (см. № 566 (а), [15]).

· Арена цирка имеет длину 40,8 м. Найди диаметр и площадь арены. Число p округли до целых (см. № 737, [15]).

Также к этой группе относятся задачи:

5 класс, часть 1, [11]: №№ 102 (3), 142 (5), 280 (1), 716, 753, 791, 800;

5 класс, часть 2, [12]: №№ 269 (5), 271 (1), 307, 352 (3), 379 (1), 380 (2);

6 класс, часть 1, [13]: №№ 56 (а);

6 класс, часть 3, [15]: №№ 341, 342, 547, 549 (2,4), 562, 566.

Также при обучении действию замены исходных терминов выбранными математическими эквивалентами применяются задачи, в которых требуется замена одной единицы измерения другой более мелкой и наоборот. Таких задач в учебниках очень много, но в основном в них требуется переводить километры в метры, метры в сантиметры, минуты в часы (№№ (5 класс, часть 1, [11]) 146 (1,2,4), 162 (2), 340 (1), 392, 406, 408, 504, 561, 581, 679, 752. 764, 786, 797, 798; №№ 44, 56, 127 (3), 221, 228, 616 (2), 769 (2), 901, 992, 1065, 1067 (5 класс, часть 2, [12]); №№ 189 (2), 190 (2), 191 (2), 198, 199, 201, 209, 210, 212, 223, 233, 247, 305, 306, 334 (6 класс, часть 1, [13]); №№ 44, 49, 125,203, 204, 292, 293 (1), 322, 372, 373, 551 (6 класс, часть 2, [14]); №№ 116, 130 (а), 132,133, 154, 195, 223, 228, 304, 433-436, 444, 465, 466, 467, 499, 563, 633, 667, 678-680, 683, 700, 706, 717, 720, 727, 728, 738, 764, 767 (б) (6 класс, часть 3, [15])), что не вызывает больших сложностей у школьников. Например.

· Чтобы связать шарф длиной 1,4 м, нужно 350 г шерсти. Сколько шерсти потребуется, чтобы связать шарф такой же ширины длиной 180 см? (Cм. № 225 (1), [14]).

· Подводная лодка, идя со скоростью 15,6 км/ч, пришла к месту назначения за 3 ч 45 мин. С какой скоростью она должна была идти, чтобы пройти весь путь на 45 мин быстрее (см. № 227 (1), [14]).

Часто на практике используются такие единицы времени, как неделя, декада, квартал, век. В учебниках недостаточно задач, в которых название единиц измерения включено в сюжет задачи и требуется заменить одну единицу измерения другой в соответствии с условием. В таких задачах математическим эквивалентом будет являться число более мелких единиц измерения.

· Средняя температура воздуха за неделю равна 18,6°, а за шесть дней без воскресенья – 18,4°. Какой была температура воздуха в воскресенье? (Cм. № 285 (2), [13]).

Мы считаем, что необходимо рассматривать больше задач, в которых требуется перевод единиц измерения, не водящих в известные системы мер, чем их приведено в учебниках [11 – 15].

При обучении действию оценки полноты исходной информации и введения при необходимости недостающих числовых данных необходимо учитывать компоненты, которые могут быть в условии этих задач: сюжет (объекты), величины, их характеризующие, значения этих величин. При этом можно выделить следующие типы задач, представленные в таблице [19].

сюжет

величины

значения

а)

+

+

-

б)

+

-

+

в)

-

+

+

г)

-

-

+

д)

-

+

-

е)

+

-

-

Знак «+» обозначает наличие соответствующего компонента в условии, знак «-» - отсутствие. Знак «-» в графе «сюжет» характеризует задачи, в которых требуется подобрать объекты по заданным величинам и (или) значениям. Знак «-» в графе «величины» предполагает выделение системы необходимых исходных величин в условиях лишних или недостающих данных. Комбинации «+», «+», «+» и «-», «-», «-» не рассматриваются как не представляющие интереса.

Кроме того, задачи внутри одного типа могут отличаться и формой задания: таблица, диаграмма, чертеж, краткая запись и т. д. Приведем примеры задач, встречающихся в анализируемых учебниках, соответствующие выделенным типам.

Первый тип соответствует комбинации «+», «+» «-» и характеризуется наличием сюжета, величин и отсутствием значений величин. Сюда относятся такие задачи как:

· По шоссе автомобиль двигался 2 часа со скоростью 90 км/ч, а по проселочной дороге – 5 часов со скоростью v км/ч. Сколько всего километров проехал автомобиль по шоссе и по проселочной дороге? (Cм. № 14 (1), [11]).

· Зарплату рабочего, равную n руб., повысили сначала на 10%, а потом еще на 40% от новой суммы. Какой стала зарплата после второго повышения? (Cм. № 58 (г), [15]).

· Цену на компьютер снизили сначала на 20%, а потом еще на 50% от новой цены. После этого компьютер стал стоить k руб. Какой была его первоначальная цена? (Cм. № 58 (д), [15]).

К типу I относятся также следующие задачи:

5 класс, часть 1, [11]: №№ 10, 14 (1), 16 (2-8), 28 (б), 40 (1-4), 72 (1-5), 82 (1), 83 (2), 142, 158 (1), 207, 210 (3), 250 (2), 317 (1), 317 (5), 398, 431, 433, 465, 466, 505, 506, 509, 531, 680;

5 класс, часть 2, [12]: №№ 478, 487, 495, 870, 884, 929, 1000, 1001, 1097, 1122, 1137, 1162;

6 класс, часть 1, [13]: №№ 66 (1,2), 107, 200, 222, 228, 443;

6 класс, часть 2, [14]: №№ 47 (1,3,4), 53 (1,3), 83, 130 (1,3), 136, 286, 287, 329, 337, 374, 453;

6 класс, часть 3, [15]: №№ 10, 16, 24, 148, 268, 319, 367 (б, в, г, д, е), 729.

Ко второму типу относятся задачи, в которых есть сюжет, числовые данные, но нет величин, которые они характеризуют. Например.

· В пяти ящиках лежит по одинаковому числу яблок. Если из каждого ящика вынуть 60 яблок, то во всех ящиках останется столько яблок, сколько их раньше было в двух ящиках. Сколько яблок было в каждом ящике? (Cм. № 167, [11]).