Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
«Вятский государственный гуманитарный университет»
Физико-математический факультет
Кафедра дидактики физики и математики
Выпускная квалификационная работа
Методика использования визуальных моделей в обучении школьников решению математических задач
Выполнил
студент V курса физико-математического факультета
(специальность 050201.65 Математика)
Слончук Артём Геннадьевич
Научный руководитель:
канд. пед. наук, ст. преп. кафедры
дидактики физики и математики
Горев Павел Михайлович
Рецензент:
канд. пед. наук, доцент кафедры
дидактики физики и математики
Крутихина Марина Викторовна
Работа допущена к защите в государственной аттестационной комиссии
«___»__________2008 г. Зам. зав. Кафедрой М.В. Крутихина
«___»__________2008 г. Декан факультета Е.В. Кантор
Киров, 2008
Содержание
Введение
§ 1. Наглядность как средство развития школьников в процессе обучения математике
1.1. Понятие наглядности и ее роль в процессе обучения математике
1.2. Функции наглядности в обучении математике
1.3. Виды наглядности в обучении математике
1.4. Роль наглядности в математике
1.5. Использование наглядности в процессе обучения математике
§ 2. Методика обучения решению математических задач с использованием визуальных моделей
2.1. Методика построения визуальных моделей при обучении решению текстовых задач
2.2. Методика использования визуальных моделей при обучении решению задач на движение
2.3. Методика применения визуальных моделей при обучении решению задач с параметрами
§ 3. Описание и анализ результатов опытно-экспериментальной работы
Заключение
Библиографический список
В процессе обучения математике задачи выполняют разнообразные функции. Учебные математические задачи являются эффективным и часто незаменимым средством усвоения учащимися понятий и методов школьного курса математики, вообще математических теорий. Велика роль задач в развитии мышления и в математическом воспитании учащихся, в формировании у них умений и навыков в практических применениях математики.
Как показывает школьная практика, результаты ЕГЭ, учащиеся не достаточно хорошо решают задачи, иногда даже не берутся за их решение. Это связанно с тем, что учащиеся плохо владеют методами решения задач.
Эффективным средством обучения решению задач является метод визуализации. Он помогает найти путь решения, способствует более глубокому усвоению алгоритмов решения, осознанию всех связей присутствующих в задаче, помогает увидеть взаимосвязь понятий, что позволяет на более высоком уровне оценить их роль и значение для задачи в частности и соответствующей теории вообще.
Но, как показывает анализ учебной литературы, данная тема не достаточно глубоко освещена, что не позволяет использовать учащимся визуальные модели как средство решения задач. Кроме того, методическая литература тоже не содержит основательных сведений в этой области. Как следствие этого учителя практически не используют данные методы в процессе обучения.
Таим образом, актуальность работы обусловлена:
· необходимостью повышения уровня знаний школьников в области использования визуальных моделей для решения математических задач;
· недостаточной разработанностью методических пособий по данной теме;
· недооценкой учителями роли визуализации в процессе обучения решению математических задач.
Гипотеза исследования заключается в том, что систематическое и целенаправленное использование методов визуализации в процессе обучения школьников математике способствует осознанному умению решать математические задачи, повышает уровень эффективности обучения, способствует развитию и поддержанию интереса к математике, а так же развитию различных форм мыслительной деятельности.
Объект исследования – процесс обучения математике в средней школе.
Предмет исследования – использование методов визуализации при обучении школьников решению математических задач.
Целью работы является выявление возможностей применения визуальных моделей при решении математических задач и составление методических рекомендаций по их использованию.
Достижение цели работы реализуется через систему задач:
· изучить учебно-методическую и психолого-педагогическую литературу по теме исследования;
· перечислить требования и сформулировать правила применения наглядных пособий при обучении математике;
· рассмотреть методику работы с визуальными моделями при обучении решению математических задач;
· проверить эффективность данной методики с помощью опытного преподавания.
Работа состоит из введения, трех параграфов, заключения и библиографического списка (24 источника). В первом параграфе рассмотрены основные положения использования наглядности в обучении математике. Во втором параграфе изложена методика использования визуальных моделей при решении отдельных классов задач. Третий параграф содержит описание и анализ опытного преподавания, осуществленного на базе школы № 21 г. Кирова.
§ 1. Наглядность как средство развития школьников в процессе обучения математике
Формирование общего, абстрактного понятия является сложным многоступенчатым процессом. Прежде чем понятие будет осознано в полной мере своего абстрактного содержания, оно должно пройти стадию восприятия (информация на уровне ощущений), представления (ту стадию, на которой осознаются лишь некоторые стороны изучаемого объекта). Вот что говорит о связи понятия и представления известный советский психолог С. Л. Рубинштейн: «Понятие и представление неразрывно связанны друг с другом. Они не тождественны, но между ними существует единство; они исключают друг друга как противоположности, поскольку представление образно-наглядно, а понятие не наглядно, представление – даже общее – связано более или менее непосредственно с наглядной единичностью, отражает явление в более или менее непосредственной данности, а в понятии преодолевается ограниченность явления и раскрываются его существенные стороны в их взаимосвязи» [19].
Таким образом, чтобы сформировать понятие нужно иметь представление, которое в свою очередь имеет наглядно-образную природу, и опирается на восприятие.
Формирование понятий приоритетная задача обучения, т. к. знания, без владения понятиями, утрачивают свою содержательность, а умения и навыки становятся формальными. Психологические механизмы этого процесса таковы, что обучение должно опираться на чувственный опыт или, говоря педагогическими терминами, на наглядность.
Исторически сложилось так, что необходимость обращения к визуальным образам была постулирована, как педагогический принцип еще в XVII веке. Впервые наглядность как принцип обучения ввел в теорию и практику обучения Я. А. Коменский. Сформулированное им «золотое правило» гласит, что все подлежащее усвоению надо предоставить ученикам для предварительного восприятия, которому подлежит все то, что воспринимается органами чувств. Коменский считал наглядность источником накопления знаний. Его последователь, Песталоцци, считал наглядность еще и средством развития способностей и духовных сил ребенка. Он осознавал, что не всякая наглядность служит источником знаний и не всякая наглядность способствует развитию. Русский педагог К. Д. Ушинский указывал, что наглядность отвечает психологическим особенностям детей, мыслящих «формами, звуками, красками, ощущениями». Наглядное обучение Ушинский определял как «такое учение, которое строится не на отвлеченных представлениях и словах, а на конкретных образах, непосредственно воспринятых ребенком».
К изучению наглядности и ее роли в процессе обучения и познания обращались известные дидакты, психологи, специалисты в области теории и методики обучения математике, ученые-математики.
Так, например, о роли наглядности в математике говорил крупнейший математик Д. Гильберт: «В математике встречаются две тенденции: тенденция к абстракции – она пытается выработать логическую точку зрения на основе различного материала и привести этот материал в систематическую связь, другая тенденция – тенденция к наглядности, которая в противоположность этому стремиться к живому пониманию объектов и их внутренних отношений».
Выдающийся философ и математик Г. В. Лейбниц говорил, что «наглядность хорошее средство против неопределенности слов».
Педагогика заимствовала идеи известных педагогов, мыслителей и их последователей, поэтому объяснения учителя связывались с необходимостью демонстрировать предмет усвоения, представленный в чувственной форме, в виде вещи, картины и т.п., с помощью наглядных пособий.
Понятие наглядности с течением времени менялось, развивалось и совершенствовалось.
Попытку математически точно определить наглядность сделал В. Г. Болтянский [1]. Он утверждал, что наглядность складывается из двух основных свойств: изоморфизма и простоты, т.е. может быть выражена следующей формулой: наглядность = изоморфизм + простота (изоморфизм – соответствие между объектами, выражающее тождество их структур). То есть это правильное изоморфное отражение существенных черт явления и простота восприятия.