Смекни!
smekni.com

Тождественные преобразования выражений и методика обучения учащихся их выполнению (стр. 3 из 5)

Второй этап – этап автоматизации умения путем исключения некоторых промежуточных операций

III. Прочность навыков достигается решением разнообразных как по содержанию, так и по форме, примеров.

Тема: “Вынесение общего множителя за скобки”.

1. Запишите вместо многочлена недостающий множитель:

2. Разложите на множители так, чтобы перед скобками был множителем одночлен с отрицательным коэффициентом:

3. Разложите на множители так, чтобы многочлен в скобках имел целые коэффициенты:


4. Решите уравнение:

IV. Формирование навыков наиболее эффективно в случае устного выполнения некоторых промежуточных вычислений или преобразований.

(устно);

(устно);

(устно);

V. Формируемые навыки и умения должны входить в ранее сформированную систему знаний, умений и навыков учащихся.

Например, при обучении разложению многочленов на множители с помощью формул сокращенного умножения предлагаются такие упражнения:

Разложить на множители:


VI. Необходимость рационального выполнения вычислений и преобразований.

в) упростить выражение:

Рациональность заключается в раскрытии скобок, т.к.

VII. Преобразование выражений, содержащих степень.

№1011 (Алг.9) Упростить выражение:


№1012 (Алг.9) Вынести множитель из-под знака корня:

№1013 (Алг.9) Внести множитель под знак корня:

№1014 (Алг.9) Упростить выражение:


Во всех примерах предварительно выполнить либо разложение на множители, либо вынесение общего множителя, либо “увидеть” соответствующую формулу сокращения.

№1015 (Алг.9) Сократить дробь:

Многие учащиеся испытывают некоторые затруднения в преобразовании выражений, содержащих корни, в частности при исследовании равенства:

Поэтому, либо подробно расписывают выражения вида

или
либо перейти к степени с рациональным показателем.

№1018 (Алг.9) Найти значение выражения:


№1019 (Алг.9) Упростить выражение:

2.285 (Сканави) Упростить выражение

,

а затем построить график функции y для


№2.299 (Сканави) Проверить справедливость равенства:

Преобразование выражений, содержащих степень, представляет собой обобщение полученных навыков и умений, при изучении тождественных преобразований многочленов.

№2.320 (Сканави) Упростить выражение:


В курсе «Алгебра 7» даны следующие определения.

Опр. Два выражения, соответственные значения которых равны при

значениях переменных, называются тождественно равными.

Опр. Равенство, верно при любых значениях переменных наз. тождеством.

№94(Алг.7) Является ли тождеством равенство:

a)

b)

c)

d)

Описание опр-ние: Замену одного выражения другим, тождественно равным ему выражением называют тождественным преобразованием или просто преобразованием выражения. Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

№ (Алг.7) Среди выражений

найдите те, которые тождественно равны

.

Тема: «Тождественные преобразования выражений» (методика вопроса)

Первая тема «Алгебры-7»-«Выражения и их преобразования» помогает закрепить вычислительные навыки, приобретённые в 5-6 классах, систематизировать и обобщить сведения о преобразованиях выражений и решений уравнений.

Нахождение значений числовых и буквенных выражений даёт возможность повторить с учащимися правила действия с рациональными числами. Умения выполнять арифметические действия с рациональными числами являются опорными для всего курса алгебры.

При рассмотрении преобразований выражений формально – оперативные умения остаются на том же уровне, который был достигнут в 5-6 классах.

Однако здесь учащиеся поднимаются на новую ступень в овладении теорией. Вводятся понятия «тождественно равные выражения», «тождество», «тождественные преобразования выражений», содержание которых будет постоянно раскрываться и углубляться при изучении преобразований различных алгебраических выражений. Подчёркивается, что основу тождественных преобразований составляют свойства действий над числами.

При изучении темы «Многочлены» формируются формально-оперативные умения тождественных преобразований алгебраических выражений. Формулы сокращённого умножения способствуют дальнейшему процессу формирования умений выполнять тождественные преобразования целых выражений, умение применять формулы как для сокращённого умножения, так и для разложения многочленов на множители используется не только в преобразовании целых выражений, но и в действиях с дробями, корнями, степенями с рациональным показателем.

В 8-м классе приобретённые навыки тождественных преобразований отрабатываются на действиях с алгебраическими дробями, квадратным корнем и выражениями, содержащие степени с целым показателем.

В дальнейшем приёмы тождественных преобразований отражаются на выражениях, содержащих степень с рациональным показателем.

Особую группу тождественных преобразований составляют тригонометрические выражения и логарифмические выражения.

К обязательным результатам обучения за курс алгебры в 7-9 классах относятся:

1) тождественные преобразования целых выражений

a) раскрытие скобок и заключение в скобки;

b) приведение подобных членов;

c) сложение, вычитание и умножение многочленов;

d) разложение многочленов на множители при помощи вынесения общего множителя за скобки и формул сокращённого умножения;

e) разложение квадратного трёхчлена на множители.

«Математика в школе» (Б.У.М.) стр.110

2) тождественные преобразования рациональных выражений: сложение, вычитание, умножение и деление дробей, а также применять перечисленные умения при выполнении несложных комбинированных преобразований [стр. 111]

3) учащиеся должны уметь выполнять преобразования несложных выражений, содержащих степени и корни. (стр. 111-112)

Были рассмотрены основные типы задач, умение решать которых позволяют получить ученику положительную оценку.

Одной из самой важных сторон методики изучения тождественных преобразований является развитие учащимся целей выполнения тождественных преобразований.

1)

- упрощение численного значения выражения

.