Смекни!
smekni.com

Элементы статистики комбинаторики и теории вероятностей в основной школе (стр. 7 из 14)

В продолжении вероятностной линии следующим шагом идет введение классического определения вероятности. Необходимо, чтобы учащиеся понимали разницу между статистическим и классическим определениями вероятности. Чтобы они осознавали, что это не еще одно определение вероятности, а один из способов вычисления вероятности.

Таким образом, сопоставляя определение классической вероятности и относительной частоты (статистическая вероятность), заключаем: определение классической вероятности не требует, чтобы испытания производились в действительности; определение же статистической вероятности предполагает, что испытания были произведены фактически. Другими словами, классическую вероятность вычисляют до опыта, относительную частоту – после опыта.

После введения классического определения вероятности можно рассмотреть геометрическую вероятность. Геометрическая вероятность напоминает классическую, но при геометрическом подходе количество всех возможных и благоприятных исходов бесконечно. В этом случае рассматривается не количество возможных и благоприятных исходов, а отношение площади области, благоприятствующей появлению рассматриваемого случайного события, к площади всей области. То есть геометрическое определение вероятности является обобщением классического определения на случай, когда число равновозможных исходов бесконечно.

На последующих этапах переходим к изучению непосредственно статистики, используя ранее полученные знания.

Появляется много новых терминов, и учителю можно посоветовать следующее: во-первых, можно сделать таблицу аналогичную таблице приведенной в учебнике Мордковича, Семенова [23], во-вторых, очень полезно было бы завести всем учащимся словарики, куда бы они заносили новые понятия, по мере потребности, могли бы туда заглядывать.

Статистические исследования являются завершающим фрагментом вероятностно-статистической линии курса. Здесь рассматриваются доступные учащимся примеры комплексных статистических исследований, в ходе которых используются полученные ранее знания. Также вводятся некоторые новые понятия. Изучение этого материала направлено на формирование умения понимать и интерпретировать статистические результаты.


Глава 2.

Методика изучения стохастики в основной школе.

В данной главе на основе выводов, полученных в 1 главе, предлагается методика по реализации стохастической линии в основной школе.

В предложенной методике работа ведется параллельно по всем направлениям. Для каждого класса ставятся свои цели и задачи, для реализации которых необходим правильно подобранный набор задач.

§1. Методика реализации стохастической линии в 5 классе.

Основными задачами на этом этапе являются:

·Выработка умений и навыков работать с таблицей, извлекать из таблиц информацию и анализировать ее.

·Выработка умений заполнять в таблице пустые графы (строки, столбцы).

·Формирование умений читать диаграммы, извлекать необходимую информацию.

·Формирование умений и навыков в составлении, выборе и упорядочении комбинаторных наборов.

·Формирование умений подсчета комбинаторных объектов, методом непосредственного перебора.

· Показать, что такое дерево возможных вариантов, его использование как один из методов решения КЗ.

·Формирование представления о том, какое событие является достоверным, какое невозможным, и какое событие мы можем назвать случайным.

·Формирование у учащихся понимания степени случайности в различных событиях и явлениях и использование для ее оценки адекватных вероятностных терминов («достоверно», «маловероятно» и т.д.).

Формирование комбинаторных навыков, как уже говорилось в 1 главе, нужно начинать как можно раньше. Желательно вести пропедевтическую работу уже в начальных классах.

А в 5 классе предлагаются простейшие комбинаторные задачи, решая которые должна вестись либо работа по перебору возможных вариантов, либо по упорядочиванию, либо их объединение - перебор и упорядочивание вместе. В нашей жизни часто возникают такие задачи, которые имеют несколько различных решений, и перед нами встает проблема рассмотреть все возможные варианты решения. Для этого нам нужно найти удобный способ перебора, при котором будут рассмотрены всевозможные варианты, и они не повторялись бы.

На первом месте перед учителем стоит задача по формированию навыков систематического перебора. Начинать нужно с простых задач, где не так много элементов, важна сама суть перебора всех вариантов.

Три друга, Антон, Борис и Виктор, приобрели два билета на футбольный матч. Сколько существует различных вариантов похода на футбол?

Здесь необходимо перебрать всевозможные пары мальчиков.

После этого можно добавить условие, при котором, решая задачу, учитываем еще и место, на котором будет сидеть тот или иной мальчик, то есть учитывается порядок элементов в наборе.

Три друга, Антон, Борис и Виктор, приобрели два билета на футбольный матч на 1-е и 2-е места первого ряда стадиона. Сколько существует способов занять эти два места на стадионе? Записать все эти варианты.

Здесь мы можем использовать результаты предыдущей задачи. В ней мы не учитывали порядок, а теперь необходимо учитывать порядок, на каком месте будет сидеть тот или иной мальчик. Рассмотрим тот вариант, когда на матч пошли Антон и Борис, в этом случае возможно два варианта занять места на матче: 1-ое место – Антон, 2-ое место - Борис и наоборот 1-ое место Борис, а 2-ое Антон. То есть упорядочить два элемента мы можем двумя способами. Таким образом, решение предыдущей задачи дало нам два решения для этой задачи. Аналогично на каждый вариант предыдущей задачи мы получаем еще один вариант решения, итого 6 вариантов.

Антону, Борису и Виктору повезло, они купили 3 билета на футбол на 1-е, 2-е и 3-е места первого ряда стадиона. Сколькими способами могут занять мальчики эти места?

В данной задаче, как и в предыдущей важно на каких местах сидят мальчики, то есть нам нужно рассмотреть, сколько существует вариантов рассадить трех мальчиков на три разных места. Пусть на первом месте сидит Антон, тогда на оставшиеся два места двух оставшихся мальчиков мы можем усадить двумя способами, аналогично для случаев, когда на первом месте сидит Борис и Виктор. В результате получим 6 вариантов, то есть упорядочить 3 элемента мы можем шестью способами.

В предыдущих задачах, не учитывая порядка перебора не сложно перечислить все возможные варианты, так как их не так много, но часто при переборе возможных вариантов их может быть столько, что сложно оценить все ли возможные решения мы учли и не пропустили ли хотя бы одно из них. В этом случае необходимо упорядочить процедуру перебора, то есть перебирать возможные варианты в некотором порядке, определенном заранее, который позволяет не допускать повторений решений и пропускать возможные решения.

Сколько двузначных чисел можно составить, используя цифры 1,2,3.

Выпишем возможные двузначные числа. Но мы не будем выписывать эти числа как попало, а договоримся выписывать их в порядке возрастания, что позволит нам не пропускать числа и не повторяться. В процессе решения этой задачи может возникнуть такой вопрос, а может ли одна и та же цифра повторяться в числе два раза? (если не возникнет, то учитель может сам обратить на это внимание). Так как в данной задаче это условие не оговорено, то решим ее для обоих случаев, и увидим, что в каждом из них число решений различно. Из чего делаем вывод, что данное условие при решении задач необходимо учитывать.

В алфавите племени УАУА имеются только две буквы – «а» и «у». Сколько различных слов по три буквы в каждом можно составить, используя алфавит этого племени?

В этой задаче одна и та же буква может встречаться в слове как один, так два или три раза. И нужно рассмотреть все варианты.

Заметим, что очень удобно процесс перебора осуществлять путем построения специальной схемы, которая называется дерево возможных вариантов. Рассмотрим построение дерева возможных вариантов для данной задачи: сначала нужно выбрать первую букву – это могут быть буквы «а» или «у», поэтому в «дереве» из корня проведем две веточки с буквами «а» и «у» на концах. Вторая буква может быть опять как «а» так и «у», поэтому из каждой веточки выходит еще по две веточки и т.д.

Теперь, проходя по веточкам дерева, по порядку выписываем нужные нам сочетания букв - «слова»:

ааа; аау; ауа; ауу; уаа; уау; ууа; ууу.

Дерево помогает увидеть путь решения, учесть все варианты и избежать повторений. Нужно обратить внимание, что дерево возможных вариантов позволяет нам подсчитывать упорядоченные наборы

В 5«А» классе в среду 4 урока: математика, информатика, русский язык, английский язык. Сколько можно составить вариантов расписания на среду?

В данной задаче у нас имеется 4 предмета и необходимо выписать возможные варианты расписания на один день, учитывая те условия, что каждый урок должен обязательно присутствовать в расписании, и встречаться там всего один раз (для упрощения записи предлагается каждый предмет обозначит его заглавной буквой). Таким образом, нам необходимо подсчитать сколькими способами мы можем упорядочить 4 элемента. Пусть первым будет урок математики, тогда оставшиеся 3 предмета мы можем упорядочить 6-ью способами (из ранее рассмотренных задач). Аналогично для оставшихся трех предметов. Итого получим 24 способа упорядочить 4 предмета.

В 5 классе начинается работа по формированию вероятностных представлений у учащихся. Сначала рассмотрим понятие случайное событие.