Смекни!
smekni.com

Особенности формирования понятия площади у младших школьников (стр. 2 из 10)

S= р(р-а)(р-b)(р-с)(р-d)= (р-а)2(р-b)2=(р-а)(р-b)

так как а=с, b=d. Так как р-а=b, р-b=а, то получим S=аb.

Формула Брахмагупта верна не для любого четырехугольника. Она применима для равнобедренной трапеции и для вписанных в круг четырехугольников, диагонали которых взаимно перпендикулярны. Сам Брахмагупта был осторожен в применении своей формулы и пользовался ею только для определения площадей выше указанных фигур. Его формула, хоть и давала лишь приближенное значение истинного размера площади любого четырехугольника, облегчала измерение площадей земельных участков, так как обход участка по периметру и его измерение – задача несложная.

Задачи деления площадей фигур с помощью пересекающих их прямых и превращение одной фигуры в другую путем разрезания и пересоставления новых фигур из полученных частей заинтересовали греческих математиков, так как землемерие и архитектурные работы выдвигали задачи такого содержания. На рисунке видно деление пополам площади треугольника прямой, проходящей через одну из его вершин. Площадь треугольника разделяется медианой на две равные части, так как 1+2=1׳+2׳.

Одной из самых простых и удобных фигур для измерения площадей является квадрат.


2 2׳

1 1׳

Поэтому математики издавна стремились превращать любую фигуру в равновеликий ей квадрат. Например, решали задачу о построении треугольника, равновеликого данному многоугольнику, и квадрата, равновеликого полученному треугольнику и т.д. Для решения аналогичных задач данный многоугольник разбивали на треугольники, так как всякий треугольник можно превратить в параллелограмм. При этом основание параллелограмма должно равняться основанию треугольника, а высота параллелограмма – половине высоты треугольника (рис. 6). Для этого достаточно провести среднюю линию треугольника.

Параллелограмм превращали в равновеликий ему прямоугольник, а прямоугольник в равновеликий ему квадрат.

Первые сведения об измерении площадей и расстояний на Руси относятся к XI веку. В Государственном Эрмитаже хранится камень с надписью: «В лето 6576 Глеб князь мерил морем по льду от Тмутороканя до Корчева 14 тысяч сажен». В этой записи говорится об измерении в 1068 году расстояния между городами Тамань и Керчь через Керченский пролив по льду.

Древние математики Египта и Индии необоснованно переносили на общий случай правила вычисления площадей, верные в некоторых частных случаях. На Руси XI – XVI веках тоже пошли путем обобщения правил. Во второй половине XVI в. возросшие потребности в измерении земли, развитие артиллерийского дела и строительство городов привели к необходимости создания рукописей геометрического содержания. В 1551 г. царь Иван IV послал людей «описать и смерить государство». К сожалению, рукописи Древней Руси до нас не дошли. Автор «Истории Российской с древнейших времен» В.Н. Татищев (1686 - 1750) писал: «Я читал наказ, данный в 1556 г. писцам о том, как следует измерять землю». К наказу прилагались «землемерные начертания», то есть чертежи. Наказ бесследно исчез. Пропали также «Математические рукописи XVII века», хранившиеся в семье писателя и историка Н.М. Карамзина (1766 - 1826).

Первой из сохранившихся рукописей, в которых излагаются правила измерения площадей, была «Книга сошного письма», самый древний экземпляр, который относится к 1629 году, хотя имеются указания, что оригинал был составлен при Иване Грозном в 1556 году. В этой книге имеется глава «О земном верстании, как земля верстать». В ней, к сожалению, содержится много ошибочного материала в способах измерения площадей. Возможно, они появились в результате искажений во время переписывания от руки. Приходится признать, что уровень знаний был невысоким, хотя не хочется считать россиян шестнадцатого и семнадцатого столетий менее грамотными, чем древние египтяне. Тем более ярким подтверждением тому служат исключительные по красоте архитектурные памятники того времени, такие, как собор Василия Блаженного, построенный в 1553-1560 г.г. при Иване Грозном русскими «мастерами каменных дел Постником, Яковлевым и Бармой.

Были и веские причины, задержавшие распространение математических знаний на Руси. В ХV в. были царские оглашения «О запрещении книг, вывезенных с Запада», в одном из которых даже говорилось, что «богомерзостен перед богом всякий, кто любит геометрию».

Лишь при Петре I в 1701 году открыли в Москве «Математические и навигатские, то есть Мореходно-хитростных наук школу». В программу обучения включили преподавание арифметики, алгебры, геометрии и тригонометрии. Эти науки преподавал выписанный из-за границы профессор-математик Форварсон и математик-самоучка Леонтий Магницкий. С того времени основы геометрии как науки проникли к нам в Россию. Именно а начале ХVIII века под редакцией Форварсона были переведены на русский язык и изданы «Начала» Евклида.

Так какие же конкретно ошибки допускали в измерении площадей на Руси?

В выше упомянутой книге «О земном верстании, как земля верстать» собраны правила измерения площадей различных фигур и приведены примеры, как ими пользоваться. Но выводов и доказательств этих правил нет. Площадь прямоугольника вычисляли путем выделения из него наибольшего квадрата, а площадь оставшейся части прямоугольника вычисляли определением, какую долю наибольшего квадрата она составляет (рис. 9).

Как примитивен этот способ по сравнению с вычислением площади прямоугольника умножением длины его на ширину!

А чтобы найти площадь трапеции, полусумму оснований умножали на большее основание.

а 2 8 В С

а аа

А D

Например, площадь трапеции ABCD при AB=CD по этому правилу равна S= AB+CD. AD (рис. 10).

По-видимому, здесь допущена ошибка при переписывании рукописи. В более поздних рукописях площадь трапеции выражается произведением полусуммы оснований на «хобот», а «хоботом» называли боковую сторону трапеции. Этот способ тоже неверный, однако более близкий к истинной величине.

При вычислении площади треугольника по правилу, указанному в книге «О земном верстании, как земля верстать», произведение большей и меньшей сторон треугольника делили на два, что, естественно, дает лишь приближенное значение истинной площади.

В Древней Руси при вычислении площадей допускали еще одну грубейшую ошибку, полагая, что «фигуры с равными периметрами имеют равные площади». Это предположение неверно ни для одной фигуры, даже если они имеют равные стороны. Например, при равенстве сторон квадрата сторонам ромба площадь квадрата больше площади ромба, так как высота ромба короче его стороны. Докажем это.

Пусть сторона квадрата и сторона ромба равны а.

В а С


а а

y

а А Е D

Площадь квадрата

Sкв.2

а площадь ромба

Sромба=аh

Из прямоугольного треугольника

АВЕ h=ВЕ=а sin А

Отсюда

Sромба.аsinА=а2sinА

Таким образом, правила, верные для конкретных фигур, неприменимы в более общих случаях.

2 1 см

3 см 3 см 2 1 см

Возьмем квадрат и равносторонний треугольник с равными периметрами (рис. 12). Для сравнения вычислим площадь равностороннего треугольника с периметром 9 см по формуле

S=1 2 а2sin α, получим

S=1 2 .32.sin60о=9 2.3 2≈9.1,7 ≈3,8=4(см2).

Сторона квадрата с периметром тоже 9 см равна 21 4см, а площадь

S=(2 1 4)2=(9 4)2=81 16≈5(cм2).

Как видите, площади не равны. Следовательно, нельзя делать вывод о равенстве площадей фигур с равными периметрами.

На ошибках учатся – гласит народная мудрость. Многократно ошибаясь и исправляя собственные ошибки, человек достиг современной высокой культуры вычислений.

1.2 Площадь плоской фигуры и ее измерение

Каждый человек представляет, что такое площадь комнаты, площадь участка земли, площадь поверхности, которую надо покрасить. Он также понимает, что земельные участки одинаковы, то площади их равны; что площадь квартиры складывается из площади комнат и площади других помещений.